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Abstract

Free vibration analysis of sandwich panels with a flexible core based on the high-order sandwich panel theory

approach is presented. The mathematical formulation uses the Hamilton principle and includes derivation of the

governing equations along with the appropriate boundary conditions. The formulation embodies a rigorous approach

for the free vibration analysis of sandwich plates with a general construction, having high-order effects owing to the

non-linear patterns of the in-plane and the vertical displacements of the core through its height. As such, it improves on

the available classical and high-order theories. The formulation uses the classical thin plate theory for the face sheets

and a three-dimensional elasticity theory or equivalent one for the core. The analyses are valid for any type of loading

scheme, localized as well as distributed, and distinguish between loads applied at the upper or the lower face. It can also

deal with any type of boundary conditions that may be different at the upper and the lower face sheets at the same edge.

The effects of the rotary inertia of the various constituents of the sandwich construction are included. Two types of

computational models are considered. The first model uses the vertical shear stresses in the core in addition to the

displacements of the upper and the lower face sheets as its unknowns. The second model assumes a polynomial

description of the displacement fields in the core that is based on the displacement fields of the first model. In this case

the unknowns are the coefficients of these polynomials in addition to the displacements of the various face sheets. The

two computational models have been validated numerically through a very good comparison with the well known

classical and high-order plate theories. The numerical study consists of free vibration eigenmodes of two typical simply-

supported panels, including higher modes that cannot be detected by other high-order computational models, and a

parametric study that compares the results of the various computational models and the first-order shear deformable

results.
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1. Introduction

Modern sandwich panels are light with a high strength to weight ratio, and nowadays are being used in

aerospace, naval, transportation and civil engineering industries. They are usually made of two metallic or
composite laminated materials face sheets and a foam or low strength honeycomb core. This type of core is

flexible in all directions and very flexible relative to the face sheets. As such, its behavior is associated with

localized effects in the form of localized displacements and stresses which affect the safety of the overall

panel. These effects lead to unidentical displacement patterns through the depth of the panel where the

displacements of the upper face sheet differ from those of the lower one. They are associated with changes in

the height of the core and the plane of section of the core taking on a non-linear pattern, rather than a

linear one, as used by many researchers. Free vibration modes of such panels consist of overall mode and

localized ones or through the thickness that the classical plate and sandwich panel theories lack to detect.
Many researchers have studied sandwich panels with traditional honeycomb cores that are infinitely stiff

in the vertical direction, very flexible in the in-plane direction, and whose section plane remains linear or

takes a ‘‘zig-zag’’ shape under static and dynamic loads. Many of these research works are described in

textbooks, such as: Allen (1966), Plantema (1966) from the late sixties, Zenkert (1995) and Vinson (1999)

from the nineties and a thorough review on sandwich panels by Noor et al. (1996). The general approaches

adopted for the analysis of sandwich panels, which is a layered structure, use solid plates theories through

equivalent one layer approach, such as Mindlin first-order theory, Mindlin (1951) and Wang (1996),

Reddy�s and other high-order theories, Reddy (1984, 1990, 1997) and recently higher-order theories, see
Kant and Mallikarjuna (1989), Senthilnathan et al. (1988) and Kant and Swaminathan (2001). In addition,

there are various finite elements approaches: utilizing Reddy�s high-order theories, see Meunier and Shenoi

(2001) and Nayak et al. (2002); using a ‘‘zig-zag’’ displacement pattern through the thickness of the panel,

see Bardell et al. (1997), and using Mindlin plate theory with linearly varying shear stresses and uniform

vertical normal stresses through the thickness of the panel which contradicts compatibility within the core,

see Lee and Fan (1996). Most of the aforementioned theories and numerical approaches based on finite

elements assume that the height of the core remains unchanged, i.e. incompressible, and all of them assume

that the boundary conditions for the upper and the lower face sheets are identical at the same edge, which in
many cases contradict real plate supports. These assumptions are correct as long as the core is incom-

pressible. However, modern sandwich panels are made of compressible core, foam type, that are usually

associated with localized and through the thickness displacements, which the aforementioned theories and

models lack to detect. Hence, in order to address these effects an enhanced high-order theory should be

used. Analysis using a general finite elements package, such as Ansys or similar, require the use of solid

elements for the core as well as for the faces sheets, yields a very fine mesh along with an extremely large

model even for very small plates, and demands large computer resources. Hence, an analytical approach

that uses a plate approach (2D) for a 3D sandwich panel and takes into account the compressibility of the
3D core, is more then required.

The authors already have used an enhanced high-order theory––the High-order Sandwich Panels Theory

(HSAPT). It has successfully been used for various applications in the analysis of sandwich panels, such as:

beam analysis, see Frostig et al. (1992), buckling and free vibration, see Frostig and Baruch (1993, 1994),

bending and buckling in sandwich plates, see Frostig and Baruch (1996) and Frostig (1998), photoelasticity

verification, see Thomsen and Frostig (1997), non-linear behavior, see Sokolinsky and Frostig (2000), free

vibration of curved beams, see Bozhevolnaya and Frostig (2001), similitude problems, see Frostig and

Simitses (2002), and piezoelectric problems, see Rabinovitch et al. (2003).
The dynamic governing equations, including rotational inertia and the required boundary, conditions

are derived explicitly through the Hamilton principle. The mathematical formulation follows the steps of

the high-order theory (HSAPT) used for unidirectional panels and plates, see Frostig et al. (1992), Frostig

and Baruch (1994, 1996), and Bozhevolnaya and Frostig (2001). The mathematical formulation incorpo-
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rates the effects of the flexible core into the equations of motion and the boundary conditions. The sandwich

panels are assumed to be elastic, linear with small displacements and consist of a core and two thin plates––

the two face sheets, with in-plane and flexural rigidity and negligible shear strain. The core has shear

resistance and negligible in-plane and flexural rigidity and its interfaces with the face sheets consist of a full
bond and it can resist shear and vertical normal stresses. The external loads are applied at the upper or the

lower face sheet only.

Two computational models are proposed; the first one with a formulation that uses the displacements

and the shear stresses in the core as its unknowns (mixed formulation), and the second one in which the

unknowns are displacements only. The first model follows the principles of HSAPT where the unknowns

include also the vertical shear stresses of the core. It yields simple yet accurate governing equations of

motion and boundary conditions in terms of stress resultants with a physical meaning. These equations of

motion can be verified through equilibrium of a differential element of the sandwich panel with inertial
loads. The second model is based on the polynomial displacement distributions of the core through its

depth, which are the results of the first computational model, but uses the coefficients of the polynomial

distribution as its unknowns. Its principle is similar to the approach used in the high-order shear

deformable plate theory by Reddy (1984). This formulation yields higher-order stress resultants that have

no physical meaning along with complicated field/governing equations of motion that are derived through

variational calculus. The equations of motion in this case cannot be validated by a simple equilibrium

approach.

In the first computation model, the inertia forces of the core are transferred to the face sheets and are not
incorporated into the governing equations of motion in the core. Hence, the stress and the displacement

fields in the core can be described by the closed-form analytical solution of its three-dimensional static

governing equations. The analytical solution of these fields consists of a cubic distribution, through the

thickness of the core, for the in-plane displacements and a quadratic one for the vertical displacement. The

second model is used to investigate the influence of the inconsistency of the first model on the free vibration

response. In the second model the dynamic equilibrium equations of the core are fulfilled only in the global

sense rather then in the differential one that is used in the first model.

The manuscript outlines the mathematical formulation that includes the derivation of the governing
equations of motion along with the associated boundary conditions, and the analytical solution of the

displacement and the stress fields of the core in terms of the unknowns in the first computational model. A

numerical study of the free vibration of a simply-supported panel with a comparison with the classical and

high-order plate theories, along with a parametric study which investigates the effect of the moduli ratio

between the core and the face sheets on the lower eigenfrequency, and a comparison between the two

models, are presented. Summary and conclusions are presented in the sequel.
2. Mathematical formulation

The mathematical formulation consists of derivation of the governing field equations of motion along

with the appropriate boundary conditions for the face sheets and core. They are derived through the

Hamilton principle which extremizes the Lagrangian that consists of the kinetic, strain energy and the

external work. It reads:
Z t2

t1

dð�T þ U þ V Þdt ¼ 0 ð1Þ
where T is the kinetic energy and U and V are the strain energy and the potential of the external loads
respectively, t is the time coordinate between the times t1 and t2, and d denotes the variation operator.
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The first variation of the kinetic energy for the sandwich panel reads:
dT ¼
Z
Vt

ðqt _utd _ut þ qt _vtd _vt þ qt _wtd _wtÞdvþ
Z
Vb

ðqb _ubd _ub þ qb _vbd _vc þ qb _wbd _wbÞdv

þ
Z
Vcore

ðqc _ucd _uc þ qc _vcd_vc þ qc _wcd _wcÞdv ð2Þ
where qjðj ¼ t; b; cÞ is the density of the upper and lower face sheets and the core, respectively;
_uj; _vj; _wjðj ¼ t; b; cÞ are the velocities in the longitudinal, transverse and vertical direction, respectively, of

the various constituents of the sandwich panel; _f ¼ of
ot is the first derivative of the function f with respect to

the time coordinate; Vjðj ¼ t; b; coreÞ is the volume of the upper and lower face sheets and core, respectively

and dv is the volume of a differential segment.

The first variation of the strain energy in terms of stresses and strains reads:
dU ¼
Z
Vt

ðrxxtdexxt þ ryytdeyyt þ sxytdcxytÞdvþ
Z
Vb

ðrxxbdexxb þ ryybdeyyb þ sxybdcxybÞdv

þ
Z
Vcore

ðsxzcdcxzc þ syzcdcyzc þ rzzcdezzcÞdv ð3Þ
where riij and eiij (i ¼ x or y and j ¼ t; b) are the longitudinal and transverse normal stresses and strains in
the upper and the lower face sheet, respectively; sxyj and cxyjðj ¼ t; bÞ are the in-plane shear stress and angle

respectively at the various face sheets; sizc and cizc (i ¼ x or y) are the vertical shear stresses and shear strains

in the core on the longitudinal and transverse faces of the core, and rzzc and ezzc are the (vertical) normal

stresses and strains in the vertical direction of the core.

The variation of the external work equals:
dV ¼ �
Z a

0

Z b

0

ðnxtdu0t þ nxbdu0b þ nytdv0t þ nybdv0b þ qtdwt þ qbdwbÞdxdy ð4Þ
where u0j, v0j, and wjðj ¼ t; bÞ are the displacements in the longitudinal, transverse and vertical directions,

respectively, of the mid-plane of the face sheets; nxj and nyjðj ¼ t; bÞ are the in-plane external loads in the

longitudinal and transverse direction, respectively, of the upper and the lower face sheets and qt and qb are
the vertical distributed loads exerted on the upper and lower face sheets, respectively. Geometry and sign

convention for stresses, displacements, and loads appear in Fig. 1.

The kinematic relations with small linear displacements take the following form:

For the face sheets ðj ¼ t; bÞ:
exxj ¼ exx0j þ zjvxxj
eyyj ¼ eyy0j þ zjvyyj
cxyj ¼ cxy0j þ zjvxyj

ð5Þ
where the mid-plane in-plane strains and curvatures read:
exx0j ¼ u0j; x; eyy0j ¼ v0j;y ; cxy0j ¼ u0j;y þ v0j; x
vxxj ¼ �wj; xx; vyyj ¼ �wj;yy ; vxyj ¼ �2wj; xy
where exx0j, eyy0j and cxy0jðj ¼ t; bÞ are the in-plane strains in x and y directions and the in-plane shear angle
of the mid-plane of the upper and the lower face sheets, respectively; vxxj, vyyj and vxyjðj ¼ t; bÞ are the

curvature in the x and y directions and the torsion curvature of the face sheets, respectively; zj is the vertical
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Fig. 1. Geometry, displacement patterns and stress resultants for model I: (a) geometry, (b) stresses, stress resultants and external loads

exerted on the face sheets and the core, (c) displacements pattern through the height of the core and the face sheets.
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coordinate of each face sheet and is measured downward from the mid-plane of each face sheet (see Fig.

1b), and ð Þ; kl denotes a partial derivative with respect to k and l variables.
For the core:
cxz ¼ uc; zc þ wc; x cyz ¼ vc; zc þ wc; y ezz ¼ wc; zc ð6Þ
where ucðx; y; zc; tÞ, vcðx; y; zc; tÞ and wcðx; y; zc; tÞ are the longitudinal, transverse, and vertical deflections of
the core, respectively, and zc is the vertical coordinate of the core, measured downward from the upper

interface (see Fig. 1b).

The compatibility conditions at the upper and the lower face–core interface, ðj ¼ t; bÞ, read:
ucðz ¼ zcjÞ ¼ u0j þ 1
2
ð�1Þkdjwj;x

vcðz ¼ zcjÞ ¼ v0j þ 1
2
ð�1Þkdjwj;y

wcðz ¼ zcjÞ ¼ wj

ð7Þ
where k ¼ 0 when j ¼ t and k ¼ 1 when j ¼ b; zct ¼ 0 at the upper interface and zcb ¼ c at the lower

interface (see Fig. 1b), ucðz ¼ zcjÞ; vcðz ¼ zcjÞ and wcðz ¼ zcjÞ at ðzcj ¼ 0; cÞ are the longitudinal, the trans-
verse, and the vertical deflections, respectively, in the core at the upper and the lower face–core interfaces;
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djðj ¼ t; bÞ and c are the thickness of the upper and lower face sheets and the height of the core, respectively,

(see Fig. 1a).

The first variation of the kinetic energy assuming homogeneous initial conditions and after integration

by parts with respect to the time coordinate, reads:
dT ¼ �
Z
Vt

ðqt€utdut þ qt€vtdvt þ qt€wtdwtÞdv�
Z
Vb

ðqb€ubdub þ qb€vbdvc þ qb€wbdwbÞdv

�
Z
Vcore

ðqc€ucduc þ qc€vcdvc þ qc€wcdwcÞdv ð8Þ
where €uj, €vj, €wjðj ¼ t; b; cÞ are the accelerations in the longitudinal, transverse and vertical accelerations,
respectively, of the various constituents of the sandwich panel, and €f ¼ o2f

ot2 denotes the second derivative of

the function f with respect to the time coordinate.

The differences between the two computational models are a result of the description of the accelerations

and the displacements in the core, (in both models). The two computational models are described next.

2.1. High-order sandwich panel computational model––mixed formulation (model I)

In the first computational model the core is regarded as a medium that transfers its inertial loads to
the face sheets, rather than resisting them by itself, in order to prevent wave like behavior in the lon-

gitudinal and transverse directions. Hence, the distributions of the accelerations through the depth of the

core are assumed to take the shape of the static displacement fields under fully distributed loads, an

approach commonly used in many dynamic analyses of ordinary beams, plates and shells, see for

example Shames and Dym (1991). The distribution of the static displacements through the depth of the

core are in general non-linear, see Eqs. (33), (35) and (36) in Frostig and Baruch (1996), when subjected

to a general type of loading, where they depend on the displacements of the upper and the lower face

sheets and the vertical shear stresses in the core. The non-linearities in these distributions are associated
with significant changes in the vertical shear stresses. However, when fully distributed loads are applied

to the face sheets, these non-linearities are small and without a loss of accuracy linear distributions may

be used instead. Therefore, the distributions of the acceleration, through the depth of the core, take a

linear pattern, as follows:
€ucðx; y; zc; tÞ ¼ €utðx; y; zt ¼ dt=2; tÞ 1
�

� zc
c

�
þ €ubðx; y; zb ¼ �db=2; tÞ

zc
c

€vcðx; y; zc; tÞ ¼ €vtðx; y; zt ¼ dt=2; tÞ 1
�

� zc
c

�
þ €vbðx; y; zb ¼ �db=2; tÞ

zc
c

€wcðx; y; zc; tÞ ¼ €wtðx; y; zt; tÞ 1
�

� zc
c

�
þ €wbðx; y; zb; tÞ

zc
c

ð9Þ
Notice that this simplification is applied to the kinetic inertia terms only. The second computational model

is used to validate the accuracy of this simplification.
The equations of motion and the boundary conditions are derived using Eqs. (1), (3), (4) and (8), with

the aid of the kinematic relations, Eqs. (5) and (6), the compatibility conditions, Eq. (7), and the distri-

bution of the acceleration of the core, Eq. (9) together with the stress resultants, see Fig. 1. Hence, after

integration by parts, and some algebraic manipulation, the equations of motion read:

For the upper face sheet:
1

3
u0t;tt

�
þ 1

6
u0b;tt þ

1

12
dbwb;xtt �

1

6
dtwt;xtt

�
Mc � Nxxt;x � Nxyt;y � sxzt þ u0t;ttMt � nxt ¼ 0 ð10Þ
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v0t;ttMt þ
1

12
dbwb;ytt

�
þ 1

6
v0b;tt þ

1

3
v0t;tt �

1

6
dtwt;ytt

�
Mc � Nyyt;y � syzt � Nxyt;x � nyt ¼ 0 ð11Þ

wt;ttMt þ
�
� 1

12
d2
t wt;yytt þ

1

12
u0b;xttdt þ

1

24
dbwb;xxttdt þ

1

6
u0t;xttdt þ

1

6
wb;tt �

1

12
d2
t wt;xxtt þ

1

6
v0t;yttdt

þ 1

24
dbwb;yyttdt þ

1

12
v0b;yttdt þ

1

3
wt;tt

�
Mc þ ð�wt;xxtt � wt;yyttÞImt � rzzt � 2Mxyt;xy �Myyt;yy � qt

�Mxxt;xx �
1

2
syzt;ydt �

1

2
sxzt;xdt ¼ 0 ð12Þ
For the lower face sheet:
1

3
u0b;tt

�
� 1

12
dtwt;xtt þ

1

6
dbwb;xtt þ

1

6
u0t;tt

�
Mc þ u0b;ttMb � nxb þ sxzb � Nxxb;x � Nxyb;y ¼ 0 ð13Þ

1

6
v0t;tt

�
þ 1

3
v0b;tt þ

1

6
dbwb;ytt �

1

12
dtwt;ytt

�
Mc þ v0b;ttMb þ syzb � Nyyb;y � nyb � Nxyb;x ¼ 0 ð14Þ

�
� 1

12
v0t;yttdb þ

1

6
wt;tt þ

1

24
dtwt;yyttdb �

1

12
d2
bwb;yytt þ

1

3
wb;tt �

1

12
u0t;xttdb �

1

6
u0b;xttdb �

1

12
d2
bwb;xxtt

þ 1

24
dtwt;xxttdb �

1

6
v0b;yttdb

�
Mc þ wb;ttMb þ ð�wb;yytt � wb;xxttÞImb � 2Mxyb;xy �Myyb;yy �

1

2
syzb;ydb

� qb �
1

2
sxzb;xdb �Mxxb;xx þ rzzb ¼ 0 ð15Þ
where Nxxj, Nyyj and Nxyjðj ¼ t; bÞ are the normal stress resultants in the longitudinal and the transverse
directions, and the in-plane shear stress resultant, respectively both, at the upper and the lower face sheets;

Mxxj, Myyj and Mxyjðj ¼ t; bÞ are the bending moment in the longitudinal and the transverse directions and

the torsion moment, respectively, at various face sheets; sxzj, syzj and rzzjðj ¼ t; bÞ are the shear stresses in the

longitudinal and transverse directions and the vertical normal stresses of the core, respectively both, at the

upper and the lower face–core interfaces Mj;Imjðj ¼ t; bÞ are the mass and the rotary inertia per area unit,

respectively of the upper and the lower face sheets, Mc is the mass per area unit of core and ð Þ;ijtt denoting
partial derivative with respect to i and j and t, where the indices refer to the coordinates of the panel and the

time coordinate. For sign convention see Fig. 1b.
For the core:
� sxzc;zc ¼ 0;�syzc;zc ¼ 0

� sxzc;x � rzzc;zc � syzc;y ¼ 0
ð16Þ
Notice, that the field/equilibrium equations of the core are fulfilled in the differential sense rather than the

global one (see dynamic equilibrium equations of model II herein). The shear stresses, sxzc and syzc, are
uniform through the height of the core and are functions of the x and y coordinates and time only. Thus
sxzcðx; y; zc; tÞ ¼ sxðx; y; tÞ; syzcðx; y; zc; tÞ ¼ syðx; y; tÞ ð17Þ
Therefore, the shear stresses at the upper and the lower face–core interfaces in the various directions read:

sxzt ¼ sxzb ¼ sx and syzt ¼ syzb ¼ sy (see Eqs. (10)–(15)). Notice, that although the inertia loads of the core
exist, their contribution has been transferred to the upper and the lower faces. Hence its equations of

motion equal those of the static ones, see Frostig and Baruch (1996).
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The boundary conditions at the edges of the panel for each face sheet ðj ¼ t; bÞ and the core, read:

For the upper and the lower face sheets, ðj ¼ t; bÞ, at x ¼ 0 or a:
kbcNxxj � Nxx;ext ¼ 0 or u0j ¼ u0j;ext ð18Þ

kbcNxyj � Nxy;ext ¼ 0 or v0j ¼ v0j;ext ð19Þ

�kbcMxxj �Mxx;ext ¼ 0 or wj;x ¼ hx;ext ð20Þ

kbc

��
� 1

6
u0t;ttdt �

1

24
dbwb;xttdt �

1

12
u0b;ttdt þ

1

12
d2
t wt;xtt

�
Mc þ 2Mxyt;y þ wt;xttImt þ

1

2
sxdt þMxxt;x

�
¼ Vxt;ext or wt ¼ wt;ext ð21Þ

kbc
1

6
u0b;ttdb

��
þ 1

12
d2
bwb;xtt þ

1

12
u0t;ttdb �

1

24
dtwt;xttdb

�
Mc þ 2Mxyb;y þ wb;xttImb þ

1

2
sxdb þMxxb;x

�
¼ Vxb;ext or wb ¼ wb;ext ð22Þ
For the upper and the lower face sheets, ðj ¼ t; bÞ, at y ¼ 0 or b:
kbcNxyj � Nxy;ext ¼ 0 or u0j ¼ u0j;ext ð23Þ

kbcNyyj � Nyy;ext ¼ 0 or v0j ¼ v0j;ext ð24Þ

�kbcMyyj �Myy;ext ¼ 0 or wj;y ¼ hy;ext ð25Þ

kbc

��
� 1

12
v0b;ttdt �

1

6
v0t;ttdt �

1

24
dbwb;yttdt þ

1

12
d2
t wt;ytt

�
Mc þ

1

2
sydt þ wt;yttImt þMyyt;y þ 2Mxyt;x

�
¼ Vyt;ext

or wt ¼ wt;ext ð26Þ

kbc

��
� 1

24
dtwt;yttdb þ

1

6
v0b;ttdb þ

1

12
d2
bwb;ytt þ

1

12
v0t;ttdb

�
Mc þMyyb;y þ

1

2
sydb þ 2Mxyb;x þ wb;yttImb

�
¼ Vyb;ext or wb ¼ wb;ext

ð27Þ
For the upper and the lower face sheets, ðj ¼ t; bÞ at the four corners of panel (x ¼ 0 or a and y ¼ 0 or b):
Mxyj ¼ 0 or wj ¼ 0 ð28Þ
where Nlkj;ext;Mlkj;ext and Vðl or kÞj;ext (l; k ¼ x; y and j ¼ t; b) are the external in-plane longitudinal and shear

loads, the bending moments and the vertical external loads exerted at the edges of the upper and the lower

face sheets at x ¼ 0 or a, and at y ¼ 0 or b, respectively, and kbc ¼ 1 at x ¼ a or y ¼ b and kbc ¼ �1 at

x ¼ y ¼ 0. Notice that the inertia terms appear also in the boundary conditions.

At any point through the height of the core, zc ¼ z, the boundary conditions at the edges read:
sxðx ¼ 0; aÞ ¼ 0 or wcðx ¼ 0; a; zcÞ ¼ wc;extðzcÞ
syðy ¼ 0; bÞ ¼ 0 or wcðy ¼ 0; b; zcÞ ¼ wc;extðzcÞ

ð29Þ
where wc;extðzcÞ is the external induced displacement through the depth of the core.
The constitutive relations for each face sheet using laminated composite materials with a general lay-up

yield the following stress resultant––displacement relations ðj ¼ t; bÞ:
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Nxxj ¼ A11je0xxj þ A12je0yyj þ A16jc0xyj þ B11jvxxj þ B12jvyyj þ B16jvxyj
Nyyj ¼ A12je0xxj þ A22je0yyj þ A26jc0xyj þ B12jvxxj þ B22jvyyj þ B26jvxyj
Nxyj ¼ A16je0xxj þ A26je0yyj þ A66jc0xyj þ B16jvxxj þ B26jvyyj þ B66jvxyj
Mxxj ¼ B11je0xxj þ B12je0yyj þ B16jc0xyj þ D11jvxxj þ D12jvyyj þ D16jvxyj
Myyj ¼ B12je0xxj þ B22je0yyj þ B26jc0xyj þ D12jvxxj þ D22jvyyj þ D26jvxyj
Mxyj ¼ B16je0xxj þ B26je0yyj þ B66jc0xyj þ D16jvxxj þ D26jvyyj þ D66jvxyj

ð30Þ
where Amnj, Bmnj, and Dmnj (m; n ¼ 1; 2; 6 and j ¼ t; b) are the reduced in-plane and flexural rigidities with

respect to the mid-plane of each face sheet, see Whitney (1987) and e0ikj and vikj (i ¼ k ¼ x; y and j ¼ t; b),
are the mid-plane strains and curvature, respectively, of the upper and the lower face sheets, see Eq. (5).

The constitutive relations for the core with negligible in-plane stresses and orthotropic in shear, equal:
ezzc ¼
rzzc

Ezc
; cxzc ¼

sx
Gxc

; cyzc ¼
sy
Gyc

ð31Þ
where Ezc is the modulus of elasticity of the core in the vertical direction, and Gxc and Gyc are the vertical

shear moduli on the x and y faces of the core.

The core stress and displacements fields must first be determined in order to describe the equations of

motion in terms of the displacements and the shear stresses. The core fields, in this model, equal those of the

static case, see Frostig and Baruch (1996) and Frostig (1998), since the inertia loads of the core have been

transferred to the face sheets, see Eq. (16). The stresses and the displacements fields for the orthotropic core
in shear can be found in Frostig (1998) and are presented here for completeness.

The vertical normal stresses within the core and at the upper and the lower face–core interfaces equal:
rzzc ¼
�
� wt

c
þ wb

c

�
Ezc þ

�
� zc þ

c
2

�
sx;x þ

�
� zc þ

c
2

�
sy;y

rzzt ¼
�
� wt

c
þ wb

c

�
Ezc þ 1

2
sx;xcþ 1

2
sy;yc

rzzb ¼
�
� wt

c
þ wb

c

�
Ezc � 1

2
sx;xc� 1

2
sy;yc

ð32Þ
The displacement distributions in the longitudinal, transverse and the vertical directions read:
uc ¼
1

6

z3c
Ezc

�
� 1

4

cz2c
Ezc

�
sy;xy þ

sxzc
Gxc

þ 1

6

z3c
Ezc

�
� 1

4

cz2c
Ezc

�
sx;xx þ

�
� zc þ

1

2

z2c
c
� 1

2
dt

�
wt;x

þ u0t �
1

2

wb;xz2c
c

vc ¼
1

6

z3c
Ezc

�
� 1

4

cz2c
Ezc

�
sx;xy þ

�
� zc þ

1

2

z2c
c
� 1

2
dt

�
wt;y þ

syzc
Gyc

þ 1

6

z3c
Ezc

�
� 1

4

cz2c
Ezc

�
sy;yy

þ v0t �
1

2

wb;yz2c
c

wc ¼
�
� 1

2

z2c
Ezc

þ 1

2

czc
Ezc

�
sx;x þ

�
� 1

2

z2c
Ezc

þ 1

2

czc
Ezc

�
sy;y þ

�
� zc

c
þ 1
�
wt þ

wbzc
c

ð33Þ
The stress and displacements fields within the core have been determined through: the closed-form solution

of the equilibrium equations, see Eq. (16); the compatibility requirement of the vertical displacements at the
upper and the lower face–core interface, see third equation in Eq. (7); and the compatibility requirements at

the upper face–core interface in the longitudinal and the transverse direction, see first two equations in



1706 Y. Frostig, O.T. Thomsen / International Journal of Solids and Structures 41 (2004) 1697–1724
Eq. (7). The additional two compatibility conditions in the longitudinal and transverse directions, at the

lower face sheet–core interface, are part of the governing dynamic equations, see Eqs. (40) and (41) ahead.

Notice that the displacement patterns in the various directions, through the depth of the core are in

general non-linear. The in-plane displacements take cubic polynomial distributions and the vertical dis-
placement has a quadratic one. However, in the case of fully distributed loads these patterns become linear

and the contributions of the vertical shear stresses in the core are almost null.

The governing equations of motion are formulated in terms of the following eight unknowns: the in-

plane displacements of the mid-plane of the face sheets in the x direction and y direction, the vertical

deflections of the upper and the lower face sheets and the vertical shear stresses in the core on the x and y
faces. The first six equations are determined through substitution of the constitutive relations, see Eq. (30),

in the equations of motion of the face sheets, Eqs. (10)–(15) along with Eq. (32). The additional two

equations are derived using the in-plane displacement distributions of the core in x and y directions, Eq.
(33), and the compatibility requirements at the lower face–core interface in the x and y direction, Eq. (7).

Hence, the governing equations of motion read:
1

3
u0t;tt

�
þ 1

6
u0b;tt þ

1

12
dbwb;xtt �

1

6
dtwt;xtt

�
Mc � sx þ u0t;ttMt þ B11twt;xxx � nxt � A16tv0t;yy

þ ð�A66t � A12tÞv0t;xy � A16tv0t;xx � 2A16tu0t;xy � A11tu0t;xx � A66tu0t;yy þ ðB12t þ 2B66tÞwt;yyx

þ B26twt;yyy þ 3B16twt;xxy ¼ 0 ð34Þ

1

12
dbwb;ytt

�
þ 1

6
v0b;tt þ

1

3
v0t;tt �

1

6
dtwt;ytt

�
Mc � sy þ v0t;ttMt � A66tv0t;xx þ ð�A66t � A12tÞu0t;xy

� A22tv0t;yy þ ð�A26t � A16tÞv0t;xy þ 3B26twt;yyx þ B16twt;xxx � A16tu0t;xx � A26tu0t;yy � nyt

þ B22twt;yyy þ ðB12t þ 2B66tÞwt;xxy ¼ 0 ð35Þ
�
� c
2
� 1

2
dt

�
sx;x þ

�
� c
2
� 1

2
dt

�
sy;y þ

wt

c

�
� wb

c

�
Ezc � B11tu0t;xxx þ

1

12
v0b;yttdt

�
þ 1

6
u0t;xttdt

� 1

12
d2
t wt;yytt þ

1

6
v0t;yttdt �

1

12
d2
t wt;xxtt þ

1

3
wt;tt þ

1

12
u0b;xttdt þ

1

6
wb;tt þ

1

24
dbwb;yyttdt

þ 1

24
dbwb;xxttdt

�
Mc þ ð�wt;xxtt � wt;yyttÞImt þ ð�2B66t � B12tÞv0t;xxy � B26tu0t;yyy þ 4D16twt;xxxy

þ D11twt;xxxx þ 4D26twt;xyyy þ ð4D66t þ 2D12tÞwt;xxyy � qt þ ð�2B66t � B12tÞu0t;xyy þ D22twt;yyyy

þ wt;ttMt � B22tv0t;yyy � 3B16tu0t;xxy þ ð�B26t � 2B16tÞv0t;xyy � B16tv0t;xxx ¼ 0 ð36Þ

1

3
u0b;tt

�
þ 1

6
u0t;tt þ

1

6
dbwb;xtt �

1

12
dtwt;xtt

�
Mc þ sx � nxb þMbu0b;tt þ ð�A12b � A66bÞv0b;xy

� A66bu0b;yy þ B11bwb;xxx þ B26bwb;yyy � 2A16bu0b;xy � A16bv0b;xx � A16bv0b;yy � A11bu0b;xx

þ ð2B66b þ B12bÞwb;yyx þ 3B16bwb;xxy ¼ 0 ð37Þ

1

6
v0t;tt

�
þ 1

3
v0b;tt þ

1

6
dbwb;ytt �

1

12
dtwt;ytt

�
Mc þ sy þ B16bwb;xxx þ v0b;ttMb � nyb � A26bu0b;yy

� A22bv0b;yy þ B22bwb;yyy þ ð�A16b � A26bÞv0b;xy � A66bv0b;xx þ ð2B66b þ B12bÞwb;xxy

� A16bu0b;xx þ ð�A12b � A66bÞu0b;xy þ 3B26bwb;yyx ¼ 0 ð38Þ
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�
� wt

c
þ wb

c

�
Ezc þ

�
� 1

12
v0t;yttdb �

1

12
d2
bwb;xxtt �

1

6
v0b;yttdb �

1

12
u0t;xttdb �

1

6
u0b;xttdb þ

1

6
wt;tt

� 1

12
d2
bwb;yytt þ

1

3
wb;tt þ

1

24
dtwt;yyttdb þ

1

24
dtwt;xxttdb

�
Mc þ

�
� c
2
� 1

2
db

�
sx;x þ

�
� c
2
� 1

2
db

�
sy;y

þ D22bwb;yyyy � B22bv0b;yyy � 3B16bu0b;xxy þMbwb;tt � B11bu0b;xxx � Imbwb;xxtt þ D11bwb;xxxx � qb

þ ð�2B16b � B26bÞv0b;xyy þ ð�2B66b � B12bÞv0b;xxy þ 4D16bwb;xxxy þ ð�2B66b � B12bÞu0b;xyy
þ ð2D12b þ 4D66bÞwb;xxyy � Imbwb;yytt � B26bu0b;yyy þ 4D26bwb;xyyy � B16bv0b:xxx ¼ 0 ð39Þ

c
2

�
þ 1

2
dt

�
wt;y þ

c
2

�
þ 1

2
db

�
wb;y � v0t þ

1

12

c3sx;xy
Ezc

� syc
Gyc

þ 1

12

c3sy;yy
Ezc

þ v0b ¼ 0 ð40Þ

c
2

�
þ 1

2
dt

�
wt;x þ

c
2

�
þ 1

2
db

�
wb;x �

sxc
Gxc

þ 1

12

c3sx;xx
Ezc

þ u0b � u0t þ
1

12

c3sy;xy
Ezc

¼ 0 ð41Þ
The governing equations of motion consist of a set of partial differential equations in three dimensions- two

in space, and one in time, of the order of twenty with six equations of the second order and two equations
of the fourth order, which also coincide with the number of boundary conditions, see Eqs. (18)–(29). In the

case of a harmonic excitation the original set is replaced by a set of PDE�s in two dimensions only. The

solution of this set can be achieved numerically for a general type of boundary condition and external

dynamic loads, or analytically, for the particular case of a simply-supported plate.

2.2. Free vibration of a simply-supported panel––model I

The free vibrations of a simply-supported sandwich panel are presented next. The edges of the upper and
the lower face sheets are simply-supported and the vertical displacements of the core through its depth, at

the edges are prevented. The face sheets consist of a specially orthotropic construction, with unsymmetrical

lay-up, where the Ai6j, Bi6j and the Di6j(i ¼ 1; 2 and j ¼ t; b) are null. In such a case a closed-form solution

exists and it consists of a Fourier series in two-dimensions along with a harmonic time function that fully

satisfies the boundary conditions of a simply-supported panel. However, since each coefficients of the

Fourier series are independent, a one-term solution exists.

The series solution reads ðj ¼ t; bÞ:
u0jðx; y; tÞ ¼
XN
n¼1

XM
m¼1

Cmn
u0j

cosðamxÞ sinðbnyÞ
 ! !

eðxtIÞ

v0jðx; y; tÞ ¼
XN
n¼1

XM
m¼1

Cmn
v0j

sinðamxÞ cosðbnyÞ
 ! !

eðxtIÞ

wjðx; y; tÞ ¼
XN
n¼1

XM
m¼1

Cmn
wj

sinðamxÞ sinðbnyÞ
 ! !

eðxtIÞ

sxðx; y; tÞ ¼
XN
n¼1

XM
m¼1

Cmn
sx

cosðamxÞ sinðbnyÞ
 ! !

eðxtIÞ

syðx; y; tÞ ¼
XN
n¼1

XM
m¼1

Cmn
sy

sinðamxÞ cosðbnyÞ
 ! !

eðxtIÞ

ð42Þ
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where M and N are the number of terms in the truncated series in longitudinal and transverse directions,

respectively; Cmn
fj

(fj ¼ u0t, v0t;wt, u0b, v0b, wb, sx and sy) are the constants of the series solution; am ¼ mp=a
and bn ¼ np=b where m and n are the wave numbers, a and b are the length and width of the panel, I is the
complex notation and x is the eigenfrequency of the panel.

The solution is determined through substitution of a general term of the series, Eq. (42), into the gov-

erning equations, Eqs. (34)–(41) which yields a set of homogeneous algebraic equations for each m and n
term, instead of the set of partial differential equations. Thus, the solution of the PDE�s is replaced by an

eigenvalue problem, with a mass and a stiffness matrix, where the square of the eigenfrequency equals to the

eigenvalue and the series constants for each m and n are the corresponding eigenvectors. The corresponding

dimension of the stiffness matrix is 8, and that of the mass matrix is only 6. It happens since the last two

equations of motion, see Eqs. (40) and (41), that describe the compatibility conditions in the longitudinal

and the transverse direction at the lower face–core interface, do not contain any inertia terms. Hence, the
stiffness matrix can be condensed into a dimension of 6 that of the mass matrix by removing Csx and Csy .

Thus, the eigenvalue problem yields only six eigenfrequencies for specified values of m and n.

2.3. High-order sandwich panel computational model––displacements formulation (model II)

The second computational model is used to investigate the accuracy of the results of the first model due

to the differences between the distributions of the accelerations through the depth of the core, see Eq. (9)

and its displacement fields, see Eq. (33). The advantage of this formulation is that the dynamic loads are
directly included in the equations of motion of the core and not through the interaction with the upper and

the lower face sheets, but at the cost of using higher bending moments and shear stress resultants that lack

any physical meaning. The formulation follows the same steps as the previous model, using the same basic

equations, Eqs. (1)–(8), but here the unknowns are the displacements of the face sheets and the core. In

order to achieve this goal, the displacements fields of the core are assumed a priori, using the distribution of

the displacement fields that have been found in the previous model, see Eq. (33), but where the coefficients

of the polynomial distribution are the unknowns. Thus, the displacements fields for the core take a cubic

pattern for the in-plane displacements and a quadratic one for the vertical ones, and they read:
ucðx; y; zc; tÞ ¼ u0ðx; y; tÞ þ u1ðx; y; tÞzc þ u2ðx; y; tÞz2c þ u3ðx; y; tÞz3c
vcðx; y; zc; tÞ ¼ v0ðx; y; tÞ þ v1ðx; y; tÞzc þ v2ðx; y; tÞz2c þ v3ðx; y; tÞz3c
wcðx; y; zc; tÞ ¼ w0ðx; y; tÞ þ w1ðx; y; tÞzc þ w2ðx; y; tÞz2c

ð43Þ
where uk and vkðk ¼ 0; 1; 2; 3Þ are the unknowns of the in-plane displacements of the core and wlðl ¼ 0; 1; 2Þ
are the unknowns of its vertical displacements, respectively. It is assumed that the accelerations and
velocities in the core have the same distributions. The compatibility conditions at the upper and the lower

face–core interfaces, see Eq. (7), are fulfilled using six Lagrange multipliers, see Fig. 2. Thus, the variation

of the strain energy, see Eq. (3), reads:
dU ¼
Z
Vt

ðrxxtdexxt þ ryytdeyyt þ sxytdcxytÞdvþ
Z
Vb

ðrxxbdexxb þ ryybdeyyb þ sxybdcxybÞdv

þ
Z
Vcore

ðsxzcdcxzc þ syzcdcyzc þ rzzcdezzcÞdvþ d
Z a

0

Z b

0

kxtðutðzt
�

¼ dt=2Þ � ucðzc ¼ � c=2ÞÞ

þ kytðvtðzt ¼ dt=2Þ � vcðzc ¼ � c=2ÞÞ þ kztðwt � wcðzc ¼ � c=2Þ þ kxbðucðzc ¼ c=2Þ

� ubðzb ¼ � db=2ÞÞ þ kybðvcðzc ¼ c=2Þ � vbðzb ¼ � db=2ÞÞ þ kzbðwcðzc ¼ c=2Þ � wbÞÞdxdy
�

ð44Þ
where zc here, is measured downwards from mid-height of core, see Fig. 2.



z  =0c

z  =c/2c
zc

dx

dy
yc

xt
yt

xc

x

y

Q   +Q   xc xc,xdx

zt

Core

Q

Q

Q   +Q   yc yc,ydy

zb

xb
yb

z  =-c/2c

dx

dy N     +N        dxxxt,xxxt
N

N     +N        dyxyt,yxyt

xxt
Nxyt

Nxyt
Nyyt

x,uot

z ,wt t

y,vot N     +N        dyyyt,yyyt

y

x Mxyt

MxxtQxt

Myyt

Mxyt
Qyt

x

y

M     +M        dxxxt,xxxt
M     +M        dxxyt,xxyt

Q   +Q      dxxt,xxt

M     +M        dyyyt,yyyt

M     +M        dyxyt,yxytQ   +Q      dyyt,yyt

qt

nxt

nyt

zzt

Upper Face Sheet

dt

N     +N        dxxyt,xxyt

Lower Face Sheet

N      +N         dxxxb,xxxb

x,uob

xxb
Nxyb

z  ,wb b

Nxyb
Nyyb

dx

dy

y
x

y,vob

N      +N         dxxyb,xxyb

N      +N         dyxyb,yxyb

N      +N         dyyyb,yyyb

db

Mxyb

xxbQxb

Myyb
Mxyb

Qyb

x

y

M      +M         dxxxb,xxxb

M      +M         dxxyb,xxyb
Q    +Q       dxxb,xxb

M      +M         dyyyb,yyyb

M      +M         dyxyb,yxybQ    +Q       dyyb,yyb

qb

zzbM

nxb

nyb

N

τ

τ

λ

λ
λ

λ

λ

τ
τ

σ

Fig. 2. Stress resultants and external loads in model II.
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The equations of motion and the boundary conditions of this computational model are derived using

Eqs. (1), (44), (4) and (8), with the aid of the kinematic relations, Eqs. (5) and (6), the compatibility

conditions, Eq. (7), along with the Lagrange multipliers and the distribution of the acceleration of the core

following Eq. (43), together with the stress resultants that appear in Fig. 2, and high-order stress resultants.
Hence, after integration by parts and some algebraic manipulation, the equations of motion and the

compatibility equations read:
u0t;ttMt � Nxxt;x � kxt � nxt � Nxyt;y ¼ 0 ð45Þ

�kyt � Nxyt;x � nyt � Nyyt;y þ v0t;ttMt ¼ 0 ð46Þ

wt;ttMt þ ð�wt;xxtt � wt;yyttÞImt �Mxxt;xx þ
1

2
kyt;ydt �Myyt;yy � 2Mxyt;xy � kzt þ

1

2
kxt;xdt � qt ¼ 0 ð47Þ

u0b;ttMb þ kxb � Nxyb;y � Nxxb;x � nxb ¼ 0 ð48Þ
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v0b;ttMb � Nxyb;x � Nyyb;y þ kyb � nyb ¼ 0 ð49Þ

wb;ttMb þ ð�wb;xxtt � wb;yyttÞImb �Myyb;yy þ
1

2
kxb;xdb � qb þ

1

2
kyb;ydb þ kzb � 2Mxyb;xy �Mxxb;xx ¼ 0 ð50Þ

1

12
c2u2;tt

�
þ u0;tt

�
Mc þ kxt � kxb ¼ 0 ð51Þ

1

80
c4u3;tt

�
þ 1

12
c2u1;tt

�
Mc �

1

2
ckxt �

1

2
kxbcþ Qxc ¼ 0 ð52Þ

1

80
c4u2;tt

�
þ 1

12
c2u0;tt

�
Mc þ

1

4
kxtc2 þ 2MQ1xc �

1

4
kxbc2 ¼ 0 ð53Þ

1

448
c6u3;tt

�
þ 1

80
c4u1;tt

�
Mc �

1

8
kxbc3 �

1

8
kxtc3 þ 3MQ2xc ¼ 0 ð54Þ

v0;tt

�
þ 1

12
c2v2;tt

�
Mc þ kyt � kyb ¼ 0 ð55Þ

1

80
c4v3;tt

�
þ 1

12
c2v1;tt

�
Mc þ Qyc �

1

2
kytc�

1

2
kybc ¼ 0 ð56Þ

1

80
c4v2;tt

�
þ 1

12
c2v0;tt

�
Mc þ 2MQ1yc �

1

4
kybc2 þ

1

4
c2kyt ¼ 0 ð57Þ

1

80
c4v1;tt

�
þ 1

448
c6v3;tt

�
Mc þ 3MQ2yc �

1

8
kytc3 �

1

8
kybc3 ¼ 0 ð58Þ

w0;tt

�
þ 1

12
c2w2;tt

�
Mc � Qxc;x � Qyc;y þ kzt � kzb ¼ 0 ð59Þ

1

12
Mcc2w1;tt �MQ1yc;y �

1

2
kztcþ Rzc �

1

2
kzbc�MQ1xc;x ¼ 0 ð60Þ

1

80
c4w2;tt

�
þ 1

12
c2w0;tt

�
Mc �MQ2xc;x þ 2Mzc �MQ2yc;y þ

1

4
kztc2 �

1

4
kzbc2 ¼ 0 ð61Þ
The compatibility equations read:
�u0t þ
1

2
dtwt;x þ u0 �

1

2
u1cþ

1

4
c2u2 �

1

8
u3c3 ¼ 0 ð62Þ

u0b þ
1

2
dbwb;x � u0 �

1

2
u1c�

1

4
c2u2 �

1

8
u3c3 ¼ 0 ð63Þ

�v0t þ
1

2
dtwt;y þ v0 �

1

2
v1cþ

1

4
c2v2 �

1

8
v3c3 ¼ 0 ð64Þ

v0b þ
1

2
dbwb;y � v0 �

1

2
v1c�

1

4
c2v2 �

1

8
v3c3 ¼ 0 ð65Þ
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�wt þ w0 �
1

2
w1cþ

1

4
c2w2 ¼ 0 ð66Þ

wb � w0 �
1

2
w1c�

1

4
c2w2 ¼ 0 ð67Þ
where the high-order stress resultants in the core equal:
fQxc;MQ1xc;MQ2xcg ¼
Z c

2

�c
2

ð1; zc; z2cÞsx dzc; fQyc;MQ1yc;MQ2ycg ¼
Z c

2

�c
2

ð1; zc; z2cÞsy dzc;

fMzc;Rzcg ¼
Z c

2

�c
2

ð1; zcÞrzz dzc

ð68Þ
The number of equations along with the compatibility equations is twenty-three. Notice that some of the

equations are algebraic which means that this set of equations is a DAEs (differential–algebraic equations)

set and not an ordinary PDEs set. All equations of motion in the core, Eqs. (51)–(61), are described in the

integral sense and not in the differential one, see Eq. (16). In other words, a core with a shear free edge is

defined here by null high-order stress resultants rather than by the condition of null shear stresses.

The boundary conditions, at each edge of the panel, consist of eleven conditions and the corners

boundary conditions. Eight conditions out of the eleven are those of the upper and the lower face sheets, see
Eqs. (18)–(28), and three additional ones are those of the core. The boundary conditions for the face sheets

differ only by the shear boundary conditions in each direction; see Eqs. (21) and (22) for the x-direction, and
Eqs. (26) and (27) for the y-direction. Only the different and additional boundary conditions are presented

and they read:

The shear boundary conditions for the upper and the lower face sheets, at x ¼ 0 or a (instead of Eqs. (21)

and (22)) equal:
kbc wt;xttImt

�
þ 1

2
kxtdt þ 2Mxyt;y þMxxt;x

�
¼ Vxt;ext or wt ¼ wt;ext ð69Þ

kbc 2Mxyb;y

�
þ 1

2
kxbdb þ wb;xttImb þMxxb;x

�
¼ Vxb;ext or wb ¼ wb;ext ð70Þ
And the shear conditions in the other direction, at y ¼ 0 or b (instead of Eqs. (26) and (27)), read:
kbc 2Mxyt;x

�
þ 1

2
kytdt þ wt;yttImt þMyyt;y

�
¼ Vyt;ext or wt ¼ wt;ext ð71Þ

kbc wb;yttImb

�
þ 1

2
kybdb þMyyb;y þ 2Mxyb;x

�
¼ Vyb;ext or wb ¼ wb;ext ð72Þ
The additional boundary conditions for the core, at x ¼ 0 and a and y ¼ 0 and b with ðj ¼ x; yÞ, read:

Qjc ¼ 0 or w0 ¼ w0;ext ð73Þ

MQ1jc ¼ 0 or w1 ¼ w1;ext ð74Þ

MQ2jc ¼ 0 or w2 ¼ w2;ext ð75Þ
where wk;extðk ¼ 0; 1; 2Þ defines the external vertical displacement, rotation and curvature imposed at mid-
height of the core, at zc ¼ 0.
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The constitutive relations for each face sheet are those in the previous computational model and for the

core those in Eq. (31). The stresses and the stress resultants in the core must be defined in terms of the

displacements in order to describe the governing equations of motion in term of the unknown displace-

ments. They are defined using the constitutive relations, Eq. (31) along with Eq. (68). Hence, they read:

Stresses:
sxc ¼ Gxcðu1 þ 2u2zc þ 3u3z2c þ w0;x þ w1;xzc þ w2;xz2cÞ
syz ¼ Gycðv1 þ 2v2zc þ 3v3z2c þ w0;y þ w1;yzc þ w2;yz2cÞ
rzzc ¼ Ezcðw1 þ 2w2zcÞ

ð76Þ
Stress resultants:
Qxc ¼
1

12
Gxcð3u3 þ w2;xÞc3 þ Gxcðu1 þ w0;xÞc

MQ1xc ¼
1

12
Gxcð2u2 þ w1;xÞc3

MQ2xc ¼
1

80
Gxcð3u3 þ w2;xÞc5 þ

1

12
Gxcðu1 þ w0;xÞc3

ð77Þ

Qyc ¼
1

12
Gycð3v3 þ w2;yÞc3 þ Gycðv1 þ w0;yÞc

MQ1yc ¼
1

12
Gycð2v2 þ w1;yÞc3

MQ2yc ¼
1

80
Gycð3v3 þ w2;yÞc5 þ

1

12
Gycðv1 þ w0;yÞc3

ð78Þ

Rzc ¼ Ezcw1; Mzc ¼
1

6
Ezcw2c3 ð79Þ
The governing equations of motion are formulated in terms of the following twenty three unknowns: the in-
plane displacements of the mid-plane of the face sheets, in the x direction and y direction, the vertical

deflections of the upper and the lower face sheets, the six Lagrange multipliers and the eleven polynomial

coefficients of the core(see Eq. (43)). The first six equations are determined through substitution of the

constitutive relations: see Eq. (30), in the equations of motion of the face sheets, Eqs. (45)–(50). The next

eleven equations are derived through substitution of the stress resultant relations; Eqs. (77)–(79), into Eqs.

(51)–(61). The additional six compatibility conditions remain unchanged. For the sake of brevity the

governing equations of this model are not presented.
2.4. Free vibration of a simply-supported panel––model II

The free vibration of a simply-supported sandwich panel is presented next for the second computational

model. The sandwich panel construction, used here, consists of face sheets that are specially orthotropic

construction with unsymmetrical laminated composite materials, similar to the construction used in the

formulation of model I. A closed-form solution exists also for this case and it is based on trigonometric

functions for a harmonic excitation, which fully satisfy the boundary conditions, including those of the

higher-order of the core. The solution is demonstrated for a one term since the Fourier series coefficients are
independent.
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The solution series reads ðj ¼ t; bÞ:
u0jðx; y; tÞ ¼
XN
n¼1

XM
m¼1

Cmn
u0j

cosðamxÞ sinðbnyÞ
 ! !

eðxtIÞ

v0jðx; y; tÞ ¼
XN
n¼1

XM
m¼1

Cmn
v0j

sinðamxÞ cosðbnyÞ
 ! !

eðxtIÞ

wjðx; y; tÞ ¼
XN
n¼1

XM
m¼1

Cmn
wj

sinðamxÞ sinðbnyÞ
 ! !

eðxtIÞ

ukðx; y; tÞ ¼
XN
n¼1

XM
m¼1

Cmn
uk

cosðamxÞ sinðbnyÞ
 ! !

eðxtIÞ ðk ¼ 0; 1; 2; 3Þ

vkðx; y; tÞ ¼
XN
n¼1

XM
m¼1

Cmn
vk

sinðamxÞ cosðbnyÞ
 ! !

eðxtIÞ ðk ¼ 0; 1; 2; 3Þ

wlðx; y; tÞ ¼
XN
n¼1

XM
m¼1

Cmn
wl

sinðamxÞ sinðbnyÞ
 ! !

eðxtIÞ ðl ¼ 0; 1; 2Þ

kxjðx; y; tÞ ¼
XN
n¼1

XM
m¼1

Cmn
kxj

cosðamxÞ sinðbnyÞ
 ! !

eðxtIÞ

kyjðx; y; tÞ ¼
XN
n¼1

XM
m¼1

Cmn
kyj

sinðamxÞ cosðbnyÞ
 ! !

eðxtIÞ

kzjðx; y; tÞ ¼
XN
n¼1

XM
m¼1

Cmn
kzj

sinðamxÞ cosðbnyÞ
 ! !

eðxtIÞ

ð80Þ
where Cmn
fj
ðfj ¼ u0t; v0t;wt; u0b; v0b;wb; u0;1;2;3;v0;1;2;3;w0;1;2; kxt; kyt; kzt; kxb; kyb; ktbÞ are the constants of the series

solution to be determined.

The solution is determined through substitution of a general term of the series, Eq. (80), into the gov-

erning equations of motion, which yields a set of homogeneous algebraic equations for each term of the

series, instead of the partial differential––algebraic set of equations. Thus, the solution of the DAEs is

replaced by an eigenvalue problem, with a mass and a stiffness matrix. Here, the dimension of the stiffness

matrix is twenty three, while that of the mass matrix is seventeen only. However, since the set of equations is

partially algebraic and partially differential equations, the corresponding mass and the stiffness matrices can
be condensed into a dimension of 11 by removing the following dependent variables: Ckxt , Ckyt , Ckzt , Ckxb ,

Ckyb , Ckzb , Cu2;3 , Cv2;3 , Cw1;2
. Thus, the number of eigenvalues, for specified values of m and n is only eleven. Six

out of these eleven eigenfrequencies are similar to those of the first computational model and the additional

five correspond to local modes in the core, with nearly null displacements in the face sheets.
3. Numerical study

The numerical study demonstrates only some of the capabilities of the proposed computational models

and is not a full blown parametric study which is beyond the scope of the paper. The study includes the free

vibration behavior of two typical sandwich panels and a parametric study. The first panel consists of a
symmetrical construction of a compressible sandwich panels and is presented only to validate of the results
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of the two computational models. It has been compared with the following computational models: the

Classical Plate Theory (CPT), the First-Order Shear Deformable Plate Theory (FOSDPT), the High-Order

Shear Deformable Plate Theory (HOSDPT) due to Reddy and the general Third-Order Shear Deformable

Plate Theory (TOSDPT), see Reddy (1997). The second one consists of a non-symmetrical construction of a
compressible sandwich panels and it discusses the effect of the weight and rigidity of the core on the ei-

genfrequencies and eigenmodes. The parametric study investigates the effect of the rigidity of the core and

its mass on the fundamental frequency.

The non-dimensional eigenfrequencies of a square simply-supported panel, a ¼ b ¼ 1200 mm, that

consists of two identical glass fibers face sheets with a quasi-isotropic lay-up and a ‘‘soft’’, are presented

first. The face sheet properties consist of thickness of dt ¼ db ¼ 6 mm, an equivalent elastic modulus of

18 000 MPa and a density of 2000 kg/m3. The core is isotropic, 60 mm thick, a light Divinycell foam core,

HD100, with closed cells. Its properties are: Ezc ¼ 85 MPa, Gxc ¼ 16 MPa and a density of 100 kg/m3. The
eigenfrequencies of the proposed computational models, (with m ¼ n ¼ 1) are non-dimensioned with re-

spect to first eigenfrequency of the CPT that is denoted by xclassical, have been compared with the various

plate models and appear in Table 1. The results of the proposed models compare very well the results of

the various plate theories. The lowest fundamental eigenfrequency of model II is very close to that of the

TOSDPT while those of model I(HSAPT) and that of Reddy�s plate theory are almost identical. The

difference in the fundamental eigenfrequency between the two models is about 10–15%. Please notice that

the proposed computational models are also able to detect higher eigenfrequencies such as Mode 6 in the

first model and the last six modes in the second models, which the various plate theories along with the
high-order ones lack.

The second case consists of a sandwich plate with unidentical laminated composite face sheets and two

types of ‘‘soft’’ cores. The dimensions and the geometrical and mechanical properties of the face sheets are

the same as in previous case except that dt ¼ 12 mm and db ¼ 6 mm. The core is isotropic, 60 mm thick, a

Divinycell foam core of type HD with closed cells. In order to study the entire spectrum of foam core, from

the lightest to the heaviest one, two types of core are investigated: the light one, HD100, used in previous

case, and the heaviest one HD250 with Ezc ¼ 300 MPa, Gxc ¼ 110 MPa and a density of 250 kg/m3. The six

and the eleven non-dimensional eigenfrequencies,(for m ¼ n ¼ 1), for the two computational models, rel-
ative to the lower eigenfrequency of an equivalent panel without shear rigidity(CPT), xclassical, appear in

Table 2. In addition, the first three eigenfrequencies of the CPT model and the first five values of the

FOSDPT model are included in Table 2 for comparison. Please notice that the lowest eigenfrequency of the

FOSDPT is a little bit higher then that of model II and is about 13% lower then that of model I. The results

for Modes 2–5 in the FOSDPT and the two models are almost identical. The discrepancy between the
Table 1

Non-dimensional eigenfrequencies, x=xclassical, of the various plate theories and the two computational models for m ¼ n ¼ 1 for a

sandwich panel with identical face sheets

Mode no. CPT FOSDPT HOSDPT (Reddy) TOSDPT Model I Mode II

1 1.0 0.46401875 0.50421562 0.45347050 0.50180037 0.45452487

2 4.86631712 4.86631712 4.86631712 4.80007470 4.86631712 4.82949225

3 8.22557725 7.005830095 7.249152414 6.969566926 7.27446123 7.265180327

4 8.225577251 8.225577251 7.846011948 8.22555405 8.025359024

5 10.02899867 10.12998446 10.02681448 10.1843184 10.15749199

6 14.11246731 11.6602411 11.65827929

7 14.76569461 18.37957674

8 20.64946999 18.69890927

9 21.14437323 35.12724995

10 35.16621182

11 42.06247918



Table 2

Non-dimensional eigenfrequencies, x=xclassical, of the two models for various Divinycell foam cores and m ¼ n ¼ 1 for a sandwich

panel with non-identical face sheets (unsymmetrical construction)

Mode

no.

HD100 HD250

CPT FOSDPT Model I Model II CPT FOSDPT Model I Model II

1 1.0 0.3959595662 0.4529651387 0.3923174974 1.0 0.747158039 0.7881577689 0.6796957532

2 4.946191356 4.946191356 4.899705631 4.870032709 4.999933176 4.999933176 4.865312339 4.861394596

3 8.360589333 6.338863250 6.66532645 6.654904339 8.451429596 8.451429596 8.220251375 8.200686944

4 8.360589333 8.263466507 8.093193471 10.94711203 12.21370097 12.20259205

5 9.444754025 9.657391600 9.633711841 13.02291024 14.05761391 14.03409186

6 9.856700373 9.850703953 18.35908648 18.34931763

7 – 17.51824641 – 45.29943517

8 – 17.77870281 – 45.38067221

9 – 33.98547029 – 74.76959640

10 – 34.01228285 – 88.32415740

11 – 40.14799270 – 88.36621342
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Fig. 3. Overall bending pattern––first eigenmodes (unsymmetrical construction): (a) 3D description, (b) view on the x–z plane,

(c) in-plane and vertical displacements of face sheets through mid-span at y ¼ b=2.
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eigenfrequencies of the two computational models is only in the first mode and it is about 13%. The first six
eigenmodes in the two models are identical. The last five eigenfrequencies (Modes 7–11) are higher modes,

involving mainly displacements in the ‘‘soft’’ core, and can be determined only by the second computational

model. Please note that they consist of pairs of eigenfrequencies that are very close.

The first, the third, and the sixth modes for m ¼ n ¼ 1 of the case with the HD100 core appear in Figs. 3–

5. In Fig. 3 the overall bending mode, which corresponds to the first eigenmode, is described. The figure
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includes a 3D description of the mode, a view on the x–z plane and the displacements of the face sheets at

mid-span at y ¼ b=2. In Fig. 4 the eigenmodes of local in-plane displacements of the upper and the lower
face sheets are presented. The 3D picture appears in Fig. 4a and views of the various planes appear in Fig.

4b and c. The in-plane displacements of the various face sheets, see Fig. 4c, reveal that the upper and the

lower faces are distorted one perpendicular to the other. The pumping mode appears in Fig. 5 and it

corresponds to the sixth eigenmode. The figure includes the 3D description and a view on the x–z plane. Fig.
5c describes the displacements curves at mid span, at y ¼ b=2, and it reveals that the upper and the lower

face sheets move opposite to each other in local bending.

The distributions of the displacements of the core, at its sides and mid-span and through its depth, of the

first six eigenmodes, in longitudinal, transverse and vertical directions, appear in Fig. 6. The results reveal
that the distribution of the vertical displacements are constants for the first five modes and linear for the

sixth mode and those of the in-plane displacements are linear for the first mode, slightly non-linear for

Modes 3 and 5 and non-linear for the even (Modes 2, 4 and 6). The linear distributions are in agreement

with the first computational model assumptions that the distributions of the accelerations of the core

through its depth are linear, see Eq. (9). Please note that although the in-plane acceleration distributions of

the first computational model are linear the discrepancy between the eigenfrequencies of the two compu-

tational models is very small with the higher modes that consist of non-linear in-plane displacements

distributions. This means that the rotary inertia of the core, which affects the behavior through the linear
and non-linear in-plane displacements distributions, has a very minor effect on the eigenfrequencies. Or in
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other words, the main contribution of the core, to the free vibration of the panel, is due to its linear vertical

displacements distribution.

The higher modes, Modes 7 and 11, which mainly involve displacements in the core, appear in Figs. 7

and 8. Each figure includes a 3D description of the deformed core and sections views in x and y directions

that include: the displacements of the mid-height plane of the core as well. The in-plane displacements of

the upper and the lower face sheets are very small and are not presented. The seventh mode involves in-

plane displacements of the edges planes of the core, see Fig. 7b and c, with no vertical displacements. On the
other hand, the eleventh mode involves pumping type of displacements also within the core, see Fig. 8, and

with very small in-plane displacements, see Fig. 8b and c. This higher mode differs from the sixth mode, see

Fig. 6, in terms of linear distributions of the vertical displacements and the no-linear displacements of the

in-plane ones.

The distributions of the displacements of the core, at the side and mid-span of the panels and through

its depth, of the last five eigenmodes (Modes 7–11), in the longitudinal, transverse, and vertical directions

through its depth, appear in Fig. 9. The results reveal that the distribution of almost all displacements is

non-linear except for the first four (Modes 7–10) in the vertical direction that are linear. The vertical
displacements reach very large values at the eleventh mode only, while those of the in-plane ones reach

extreme values at the seventh and eighth modes only. Here, the results and the assumption of the non-

linearity of the distributions of the accelerations of the second computational model, see Eq. (43),

coincide.

The parametric study investigates the effects of the ratio of the core modulus of elasticity relative to that

of the face sheets on the lower eigenfrequency and it also validates the lower eigenfrequency result of the

computational models. The study has been conducted on a square simply-supported panel of a ¼ b ¼ 1200

mm, with graphite epoxy quasi-isotropic face sheets of dt ¼ db ¼ 1:0 mm in thickness, and an equivalent
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modulus of elasticity of Et ¼ Eb ¼ Es ¼ 27420 MPa. The core is isotropic with a height of c ¼ 57:15 mm

and its density is related to the elastic modulus of elasticity of the core qc ¼ 1:0805Ec(Ec in MPa). The ratio

of Ec=Es has been changed between the values of 1/1000 to 1/10, from the very light core(foam type) to the

very heavy one(honeycomb type). The results of the lower eigenfrequency with respect to the lower
eigenfrequency of an equivalent plate with flexural rigidity only appear in Fig. 10 in four curves. The first

and the second curves describe the eigenfrequency of the first-order theory for isotropic plates, denoted by

first-order (isotropic) and orthotropic plates which neglects the in-plane and the flexural rigidity of the core,

denoted by first-order (orthotropic). The first-order eigenfrequency is calculated with the aid of the

equation that appears on page 373 (Eq. (7.137)) in the book by Shames and Dym (1991) using a shear

factor of 1 and a shear modulus that equals that of the core. In Fig. 10a the results are presented for the
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entire region of possible values of moduli ratios Ec=Es, valid for cores made of foam or metallic honeycomb.
Please note that the results of the first-order model(orthotropic) and those of model I coincide throughout

the entire range which also validates the accuracy of the lowest eigenfrequency of the computational

models. In Fig. 10b the region of moduli ratio is zoomed to the foam type of cores. The results of model I

and the results for the first-order(orthotropic) coincide. In the foam core region, see Fig. 10a, the difference

between all computational models is minor. The lowest values are those of the second computational

model. As the core ratio increases the results of the two computational models have identical trends. The

results of the first-order(isotropic) model are valid for very small values of Ec=Es and as they increase,

corresponding to heavy metallic honeycomb core, the discrepancy enlarges, up to 30%. This discrepancy is
a result of the in-plane and flexural rigidity of the core that the first-order(isotropic) model takes also into

account which the other computational models neglect. The results of the first-order(orthotropic) model

that appear in Fig. 10a and Fig. 10b coincide with the results of the computational model I. Neglect of these

rigidities is accurate whenever honeycomb types of panels are considered, since the in-plane rigidities of the

honeycomb cells are null. The maximum lower eigenfrequency for this panel is reached when the moduli

ratio is about 1/50 and descends for smaller and larger ratio values.
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4. Conclusion

A rigorous systematic free vibration analysis of sandwich panels with a flexible core that uses the high-

order theory in computational models is presented. The mathematical formulation uses the Hamilton
principle to derive the equations of motion along with the appropriate boundary conditions that include

also rotary inertia terms. The formulation is general and is valid for any type of core, for any type of

boundary conditions as well as the cases where the conditions at the upper face sheet are different from the

lower one at the same edge, and to any type of loading, distributed or localized. The model yields results in

the form of displacements, stress resultants in the face sheets, displacements and stress fields in the core, as

well as interfacial vertical normal stresses at the core–face interfaces. Two computational models are

presented.

The first computational model uses the shear stresses in the core as unknowns in addition to the face
displacement ones. It assumes that the core transfers its inertia loads to the adjacent face sheets, and that

the velocities and the accelerations distributions through its depth are assumed to be linear only to

determine the kinetic energy contribution. The resulting displacement distributions in the core are non-

linear, in general, and they take a cubic polynomial distribution for the in-plane displacements and a

quadratic shape for the vertical displacements. The equations of motion consist of eight equations with the
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order of twenty. Closed-form solutions are presented for a simply-supported panel with specially ortho-

tropic and an unsymmetrical lay-up of laminated composite material face sheets, along with the mass and

stiffness matrices. The stiffness matrix dimension is eight while that of the mass matrix is only six. For each

pair of wave numbers, m and n, there are only six eigenfrequencies.

The second computational model determines the effects of the discrepancy between the velocities of the

core and the resulting displacements on the eigenfrequencies and the eigenmodes. It uses the displacements
of the upper and the lower face sheets as unknowns, with the coefficients of the cubic and the quadratic

displacement distributions of the core, which have been determined in the first model, and the Lagrange

multipliers that are used to impose compatibility between the face sheets and the core at their interfaces.

This formulation yields twenty-three equations of motions, algebraic and partial differential equations,



0.7

0.75

0.8

0.85

0.9

0.95

0 0.02 0.04 0.06 0.08 0.1
E  /E

0.7

0.75

0.8

0.85

0.9

0.95

0 0.002 0.004 0.006 0.008 0.01

c s

First-Order (Isotropic)

Model I/First-Order
(Orthotropic)

Model II1c
la

s
1

First-Order (Isotropic)

Model II
Model I/
First-Order
(Orthotropic)

(a)

(b)
E  /Ec s

1c
la

s
1

Fig. 10. Lower non-dimension eigenfrequency versus elastic moduli ratio of core to face sheets: (a) foam and honeycomb type of core

region, (b) foam type of core region.

1722 Y. Frostig, O.T. Thomsen / International Journal of Solids and Structures 41 (2004) 1697–1724
along with twenty-two boundary conditions in each direction. The closed-form solutions of a simply-
supported panel with specially orthotropic and unsymmetrical face sheets yield a stiffness matrix with a

dimension of twenty-three and a mass matrix with a dimension of seventeen. The number of valid eigen-

values even reduces to eleven since some of the unknowns are algebraic ones. The disadvantage of this

model is that there are higher order stress resultants in the core that have only a mathematical meaning and

are physically meaningless. In addition, it is nearly impossible to impose a real shear-free edge of the core

with this model.

Some typical sandwich panels have been numerically investigated using the two computational models

along with first-order and high-order plate theories for comparison and several eigenmodes are presented.
The results of the various plate theories compared very well with those of the two computational models

compared in the fundamental model as well as in the higher modes. A comparison between the results of the

two computational models reveals a difference at the lowest eigenfrequency by about thirteen percent and

very small differences for all other modes. All other higher eigenfrequencies are almost identical and in the

two models the first six eigenmodes are almost identical, although the accelerations in the first model are

linear, and in the second one, non-linear. Please notice that the eigenfrequencies of the second model are

smaller then the corresponding ones in the first model. The second model yields additional modes which

correspond mainly to displacements in the core along with very small displacements in the face sheets. The
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lower values of the eigenfrequencies in the second model are a result of the additional degrees of freedom, in

the formulation, as compared with the first computational model.

A parametric study has been conducted for a specific sandwich panel with graphite epoxy laminated

composite face sheets. This study validates the accuracy of the lower eigenfrequency of the computational
models, and examines the influence of the moduli ratio between the core and the face sheets on this ei-

genfrequency. The range of the moduli ratio starts from very low strength foam type of core to the very

high strength metallic honeycomb. The eigenfrequency increases from almost insignificant values up to a

maximum at a moduli ratio of about 1/50, and it descends as the ratio increases. The parametric study

reveals that the results of the first-order(isotropic) model are valid as long as low strength and low weight

foam type of core is of concern. A comparison between the results of the low frequency of the proposed

models and the results of the first-order(orthotropic), model is in very good agreement.

The two computational models yield nearly identical results in spite of the inconsistency in the
description of the velocities/accelerations and the displacement distributions through the depth of the core

in the first model. They compare very well with the various plate theories and they enhance the physical

insight of free vibration of sandwich panels with a ‘‘soft’’ core and should be used whenever a sandwich

construction consists of a low-strength core.
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