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Abstract

Free vibration analysis of sandwich panels with a flexible core based on the high-order sandwich panel theory
approach is presented. The mathematical formulation uses the Hamilton principle and includes derivation of the
governing equations along with the appropriate boundary conditions. The formulation embodies a rigorous approach
for the free vibration analysis of sandwich plates with a general construction, having high-order effects owing to the
non-linear patterns of the in-plane and the vertical displacements of the core through its height. As such, it improves on
the available classical and high-order theories. The formulation uses the classical thin plate theory for the face sheets
and a three-dimensional elasticity theory or equivalent one for the core. The analyses are valid for any type of loading
scheme, localized as well as distributed, and distinguish between loads applied at the upper or the lower face. It can also
deal with any type of boundary conditions that may be different at the upper and the lower face sheets at the same edge.
The effects of the rotary inertia of the various constituents of the sandwich construction are included. Two types of
computational models are considered. The first model uses the vertical shear stresses in the core in addition to the
displacements of the upper and the lower face sheets as its unknowns. The second model assumes a polynomial
description of the displacement fields in the core that is based on the displacement fields of the first model. In this case
the unknowns are the coefficients of these polynomials in addition to the displacements of the various face sheets. The
two computational models have been validated numerically through a very good comparison with the well known
classical and high-order plate theories. The numerical study consists of free vibration eigenmodes of two typical simply-
supported panels, including higher modes that cannot be detected by other high-order computational models, and a
parametric study that compares the results of the various computational models and the first-order shear deformable
results.
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1. Introduction

Modern sandwich panels are light with a high strength to weight ratio, and nowadays are being used in
aerospace, naval, transportation and civil engineering industries. They are usually made of two metallic or
composite laminated materials face sheets and a foam or low strength honeycomb core. This type of core is
flexible in all directions and very flexible relative to the face sheets. As such, its behavior is associated with
localized effects in the form of localized displacements and stresses which affect the safety of the overall
panel. These effects lead to unidentical displacement patterns through the depth of the panel where the
displacements of the upper face sheet differ from those of the lower one. They are associated with changes in
the height of the core and the plane of section of the core taking on a non-linear pattern, rather than a
linear one, as used by many researchers. Free vibration modes of such panels consist of overall mode and
localized ones or through the thickness that the classical plate and sandwich panel theories lack to detect.

Many researchers have studied sandwich panels with traditional honeycomb cores that are infinitely stiff
in the vertical direction, very flexible in the in-plane direction, and whose section plane remains linear or
takes a “‘zig-zag” shape under static and dynamic loads. Many of these research works are described in
textbooks, such as: Allen (1966), Plantema (1966) from the late sixties, Zenkert (1995) and Vinson (1999)
from the nineties and a thorough review on sandwich panels by Noor et al. (1996). The general approaches
adopted for the analysis of sandwich panels, which is a layered structure, use solid plates theories through
equivalent one layer approach, such as Mindlin first-order theory, Mindlin (1951) and Wang (1996),
Reddy’s and other high-order theories, Reddy (1984, 1990, 1997) and recently higher-order theories, see
Kant and Mallikarjuna (1989), Senthilnathan et al. (1988) and Kant and Swaminathan (2001). In addition,
there are various finite elements approaches: utilizing Reddy’s high-order theories, see Meunier and Shenoi
(2001) and Nayak et al. (2002); using a “zig-zag” displacement pattern through the thickness of the panel,
see Bardell et al. (1997), and using Mindlin plate theory with linearly varying shear stresses and uniform
vertical normal stresses through the thickness of the panel which contradicts compatibility within the core,
see Lee and Fan (1996). Most of the aforementioned theories and numerical approaches based on finite
elements assume that the height of the core remains unchanged, i.e. incompressible, and all of them assume
that the boundary conditions for the upper and the lower face sheets are identical at the same edge, which in
many cases contradict real plate supports. These assumptions are correct as long as the core is incom-
pressible. However, modern sandwich panels are made of compressible core, foam type, that are usually
associated with localized and through the thickness displacements, which the aforementioned theories and
models lack to detect. Hence, in order to address these effects an enhanced high-order theory should be
used. Analysis using a general finite elements package, such as Ansys or similar, require the use of solid
elements for the core as well as for the faces sheets, yields a very fine mesh along with an extremely large
model even for very small plates, and demands large computer resources. Hence, an analytical approach
that uses a plate approach (2D) for a 3D sandwich panel and takes into account the compressibility of the
3D core, is more then required.

The authors already have used an enhanced high-order theory—the High-order Sandwich Panels Theory
(HSAPT). It has successfully been used for various applications in the analysis of sandwich panels, such as:
beam analysis, see Frostig et al. (1992), buckling and free vibration, see Frostig and Baruch (1993, 1994),
bending and buckling in sandwich plates, see Frostig and Baruch (1996) and Frostig (1998), photoelasticity
verification, see Thomsen and Frostig (1997), non-linear behavior, see Sokolinsky and Frostig (2000), free
vibration of curved beams, see Bozhevolnaya and Frostig (2001), similitude problems, see Frostig and
Simitses (2002), and piezoelectric problems, see Rabinovitch et al. (2003).

The dynamic governing equations, including rotational inertia and the required boundary, conditions
are derived explicitly through the Hamilton principle. The mathematical formulation follows the steps of
the high-order theory (HSAPT) used for unidirectional panels and plates, see Frostig et al. (1992), Frostig
and Baruch (1994, 1996), and Bozhevolnaya and Frostig (2001). The mathematical formulation incorpo-
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rates the effects of the flexible core into the equations of motion and the boundary conditions. The sandwich
panels are assumed to be elastic, linear with small displacements and consist of a core and two thin plates—
the two face sheets, with in-plane and flexural rigidity and negligible shear strain. The core has shear
resistance and negligible in-plane and flexural rigidity and its interfaces with the face sheets consist of a full
bond and it can resist shear and vertical normal stresses. The external loads are applied at the upper or the
lower face sheet only.

Two computational models are proposed; the first one with a formulation that uses the displacements
and the shear stresses in the core as its unknowns (mixed formulation), and the second one in which the
unknowns are displacements only. The first model follows the principles of HSAPT where the unknowns
include also the vertical shear stresses of the core. It yields simple yet accurate governing equations of
motion and boundary conditions in terms of stress resultants with a physical meaning. These equations of
motion can be verified through equilibrium of a differential element of the sandwich panel with inertial
loads. The second model is based on the polynomial displacement distributions of the core through its
depth, which are the results of the first computational model, but uses the coefficients of the polynomial
distribution as its unknowns. Its principle is similar to the approach used in the high-order shear
deformable plate theory by Reddy (1984). This formulation yields higher-order stress resultants that have
no physical meaning along with complicated field/governing equations of motion that are derived through
variational calculus. The equations of motion in this case cannot be validated by a simple equilibrium
approach.

In the first computation model, the inertia forces of the core are transferred to the face sheets and are not
incorporated into the governing equations of motion in the core. Hence, the stress and the displacement
fields in the core can be described by the closed-form analytical solution of its three-dimensional static
governing equations. The analytical solution of these fields consists of a cubic distribution, through the
thickness of the core, for the in-plane displacements and a quadratic one for the vertical displacement. The
second model is used to investigate the influence of the inconsistency of the first model on the free vibration
response. In the second model the dynamic equilibrium equations of the core are fulfilled only in the global
sense rather then in the differential one that is used in the first model.

The manuscript outlines the mathematical formulation that includes the derivation of the governing
equations of motion along with the associated boundary conditions, and the analytical solution of the
displacement and the stress fields of the core in terms of the unknowns in the first computational model. A
numerical study of the free vibration of a simply-supported panel with a comparison with the classical and
high-order plate theories, along with a parametric study which investigates the effect of the moduli ratio
between the core and the face sheets on the lower eigenfrequency, and a comparison between the two
models, are presented. Summary and conclusions are presented in the sequel.

2. Mathematical formulation

The mathematical formulation consists of derivation of the governing field equations of motion along
with the appropriate boundary conditions for the face sheets and core. They are derived through the
Hamilton principle which extremizes the Lagrangian that consists of the kinetic, strain energy and the
external work. It reads:

/t28(—T+U+V)dt:0 (1)

where T is the kinetic energy and U and V are the strain energy and the potential of the external loads
respectively, ¢ is the time coordinate between the times # and #,, and & denotes the variation operator.
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The first variation of the kinetic energy for the sandwich panel reads:
oT = / (p,1, 51, + p,0,80, + pw,dw,) dv + / (ppltpOity + p0p00, + ppWpdWy) do
V; Vs
+ / (p 1100, + p 0.0, + p Ww.0w,)dv (2)
Vcore

where p,(j =t,b,c) is the density of the upper and lower face sheets and the core, respectively;
u;, v;,w;(j = t,b,c) are the velocities in the longitudinal, transverse and vertical direction, respectively, of
the various constituents of the sandwich panel; f = %f; is the first derivative of the function f with respect to
the time coordinate; V;(j = ¢, b, core) is the volume of the upper and lower face sheets and core, respectively
and dv is the volume of a differential segment.

The first variation of the strain energy in terms of stresses and strains reads:

U = / (0xtOuxs + G108, + rxy,Syxyt) dv + / (01 Oxp + Gy 08, + ‘nybSnyb) dv
|12 Vo
+ / (TXZC6yxzc + T,Wcay)zc + O-ZZCSSZZC) dU (3)
I/COYC

where 0;;; and ¢;; (i = x or y and j = ¢, b) are the longitudinal and transverse normal stresses and strains in
the upper and the lower face sheet, respectively; t,,, and y,,,(j = ¢, b) are the in-plane shear stress and angle
respectively at the various face sheets; 7. and y,,. (i = x or y) are the vertical shear stresses and shear strains
in the core on the longitudinal and transverse faces of the core, and o... and ¢, are the (vertical) normal
stresses and strains in the vertical direction of the core.

The variation of the external work equals:

a rb
oV = — / / (1St + Ny Stigy, + 1, OV + 1,000 + W, + 0w, ) dxdy 4)
0 Jo

where uy;, vo;, and w;(j = ¢, b) are the displacements in the longitudinal, transverse and vertical directions,
respectively, of the mid-plane of the face sheets; n,; and n,;(j = ¢, b) are the in-plane external loads in the
longitudinal and transverse direction, respectively, of the upper and the lower face sheets and ¢, and ¢, are
the vertical distributed loads exerted on the upper and lower face sheets, respectively. Geometry and sign
convention for stresses, displacements, and loads appear in Fig. 1.

The kinematic relations with small linear displacements take the following form:

For the face sheets (j = ¢, b):

Evxj = &0 T Zj )y
Epi = &0 t Zjdyyy (5)
Vi = Va0t Zidy

where the mid-plane in-plane strains and curvatures read:

xx0j = Uojxs  Ey0j = Vojyy  Viyo; = Uojy T Vojix

Tog = ~Wixes  yi = ~Wiaws Ly = —2Wjxy

where &), &0, and 7y, o:(j = ¢,b) are the in-plane strains in x and y directions and the in-plane shear angle
of the miq-plane of the upper and the lower' face sheets, respectively; 1., %, and. L =1 b) are .the
curvature in the x and y directions and the torsion curvature of the face sheets, respectively; z; is the vertical



Y. Frostig, O.T. Thomsen | International Journal of Solids and Structures 41 (2004) 16971724 1701

Myyt+Mxyt,ydy dt
yyt,ydy
c
Qxt,xdx 4 3 ae
————~
My t+Myyt,xdx —" -
My xt+Mxxt,xdx db
T TSy
Core -
~dx-
Lower face Sheet
(@)
e fdyz
zc=0! ‘ X ’ ic Wy 2z
- \
. x T i
y
(b) Ozz
ze=c dx
Luc/ve
e Core
yob  Nyyb*+Nyyb,ydy Qyb*Qyb yd Mxyb*+Mxyb,ydy
Y *+Myyb,ydy —] dp/2
d. Zb
ol i %Qﬁ,x e E—)
Mxyb 7( xyb*Mxyb,xdx — 7
/ ) Tap, Mxx*Mxxb,xdx up/vy
e i X
YYE;be
Mxyb
Lower Face Sheet (c)

Fig. 1. Geometry, displacement patterns and stress resultants for model I: (a) geometry, (b) stresses, stress resultants and external loads
exerted on the face sheets and the core, (c) displacements pattern through the height of the core and the face sheets.

coordinate of each face sheet and is measured downward from the mid-plane of each face sheet (see Fig.
1b), and ( ), &/ denotes a partial derivative with respect to k and / variables.
For the core:

’yxz = uC‘Zc + WL“X yyz = UC‘ZC + WL“y &z = Wc‘zc (6)

where u.(x,y,z.,1), v.(x,y, 2., t) and w.(x, y,z., t) are the longitudinal, transverse, and vertical deflections of
the core, respectively, and z, is the vertical coordinate of the core, measured downward from the upper
interface (see Fig. 1b).

The compatibility conditions at the upper and the lower face—core interface, (j = ¢, b), read:

U (z = zo5) = uo; + (=) dwy,
UC(Z = ch) = U()j =+ %(—l)kdjwj) (7)
we(z = ch) =W

where £k =0 when j=¢ and k =1 when j = b; z, = 0 at the upper interface and z, = ¢ at the lower

interface (see Fig. 1b), u.(z = z;), v.(z = z;) and w.(z = z.;) at (z; = 0,¢) are the longitudinal, the trans-
verse, and the vertical deflections, respectively, in the core at the upper and the lower face—core interfaces;
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d;(j = t,b) and c are the thickness of the upper and lower face sheets and the height of the core, respectively,
(see Fig. la).

The first variation of the kinetic energy assuming homogeneous initial conditions and after integration
by parts with respect to the time coordinate, reads:

oT = — / (p,it,du, + p,6,0v, + p,w,dw,)dv — / (ppityOup + 000, + ppWpdwy) do
Vi Vo

- / (p.it.du. + p .00, + p Ww.0w,)dv (8)

where ii;, ¥;, Ww;(j = t,b,c) are the accelerations in the longitudinal, transverse and vertical accelerations,
respectively, of the various constituents of the sandwich panel, and f = % denotes the second derivative of
the function f with respect to the time coordinate.

The differences between the two computational models are a result of the description of the accelerations
and the displacements in the core, (in both models). The two computational models are described next.

2.1. High-order sandwich panel computational model—mixed formulation (model I)

In the first computational model the core is regarded as a medium that transfers its inertial loads to
the face sheets, rather than resisting them by itself, in order to prevent wave like behavior in the lon-
gitudinal and transverse directions. Hence, the distributions of the accelerations through the depth of the
core are assumed to take the shape of the static displacement fields under fully distributed loads, an
approach commonly used in many dynamic analyses of ordinary beams, plates and shells, see for
example Shames and Dym (1991). The distribution of the static displacements through the depth of the
core are in general non-linear, see Egs. (33), (35) and (36) in Frostig and Baruch (1996), when subjected
to a general type of loading, where they depend on the displacements of the upper and the lower face
sheets and the vertical shear stresses in the core. The non-linearities in these distributions are associated
with significant changes in the vertical shear stresses. However, when fully distributed loads are applied
to the face sheets, these non-linearities are small and without a loss of accuracy linear distributions may
be used instead. Therefore, the distributions of the acceleration, through the depth of the core, take a
linear pattern, as follows:

(.9, 20 0) = (.97 = i/ 2.0) (1= ) .02 = —do/ 2,00

bc(xmyazmt) = bt(xmyazt = dt/zat)(l _ZZE) =+ ﬁh(xay7zb = _db/zvt)zzc (9)
wc(xa.%zwt) = W,(x,y,z,,t)(l 7%) +wb(x7yazbat)zzc

Notice that this simplification is applied to the kinetic inertia terms only. The second computational model
is used to validate the accuracy of this simplification.

The equations of motion and the boundary conditions are derived using Egs. (1), (3), (4) and (8), with
the aid of the kinematic relations, Egs. (5) and (6), the compatibility conditions, Eq. (7), and the distri-
bution of the acceleration of the core, Eq. (9) together with the stress resultants, see Fig. 1. Hence, after
integration by parts, and some algebraic manipulation, the equations of motion read:

For the upper face sheet:

1 1 1 1
<§ Uor 1t + 6 uOb,tt + Edbwb,xtt - gdtwt‘xtt)Mc - Nxxt‘x - nyt‘y = Tzt + uOt,ttMt — Hy = 0 (10)
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1 1 1 1
VoM, + < lzdbwb wt+ 6 Vopur + 5 3 Vor 1t 6dtWt,ytt)M ]vyvt} Tyzt — nyt,,x — Ny = 0 (1 1)

1 1 1 1 1 1
Wy M, + < - ﬁdlzwn){m + Euob,xttdt + ﬁdbwb,xxttdt + EUOthtdt + Ewh,n - Edt Wi + 6 UOz,yttdr

1 1 1
+ _dbwbyyttdt +-—= UObiyttdt + gwr,n)Mc + (_Wt,xxtt - Wt,yyn)lmt — Oz — 2Mxyt,xy - Myyt,,vy —q:

24 12
- M, - 1 d, — l d =0 (12)
Xxt,xx 3 Tyzt,y e > Trztxt =
For the lower face sheet:

1 1 1 1

§u0b,n - Edtwt,xtt + gdbwbxrt + EUOmt M, + uOb,tth — Ny + Tyzp — Nxxb,x - nyb,y =0 (13)
1 1 1 1

& Vo + 3 Vb + Edbwb,ytt - Edth,}n M.+ vop My + Tyepy — Nyppy — 1y — Ny =0 (14)

1 1 1 1 1 1 1 1
( 2 75 Vo, mdb + - 6 Wi + 57 24 dw, yyndb 2% dZWh ot T3 3 Whu — 2 uOttxttdb - 6 u()b,,mdb 2% d Wh xxit

1 1 1
+ ﬁdtwt,xxttdb - 6 UOb,yttdb) MC + Wb,tth + (_Wb,}ytt - Wb,xxtt)[mb - 2Mxyb,xy - Myyb,yy - 5 Tyzb,ydb
1
—4p — 2 szb xdb xvcb XX + Ozzp = 0 (15)

where Ny, N,,; and N,,;(j = t,b) are the normal stress resultants in the longitudinal and the transverse
directions, and the in-plane shear stress resultant, respectively both, at the upper and the lower face sheets;
M., M,,; and M,,,;(j = t,b) are the bending moment in the longitudinal and the transverse directions and
the torsion moment, respectively, at various face sheets; ., 7,.; and o..;(j = ¢, b) are the shear stresses in the
longitudinal and transverse directions and the vertical normal stresses of the core, respectively both, at the
upper and the lower face—core interfaces M, 1,,;(j = t,b) are the mass and the rotary inertia per area unit,
respectively of the upper and the lower face sheets, M. is the mass per area unit of core and ( ), denoting
partial derivative with respect to i and j and ¢, where the indices refer to the coordinates of the panel and the
time coordinate. For sign convention see Fig. 1b.
For the core:
szc“zc - 0, Tyzc,zg - 0 (16)
— Txzex = Ozzeze — T}zc,y =0
Notice, that the field/equilibrium equations of the core are fulfilled in the differential sense rather than the
global one (see dynamic equilibrium equations of model II herein). The shear stresses, ... and 7,., are
uniform through the height of the core and are functions of the x and y coordinates and time only. Thus

‘CXZC(x7y7ZC7t) = ’Ex(xmy? t)? T}zc(X,yaant) = T,V(xvy7 t) (17)

Therefore, the shear stresses at the upper and the lower face—core interfaces in the various directions read:
Ty = Tup = Ty AN Ty = Ty = T, (see Eqgs. (10)~(15)). Notice, that although the inertia loads of the core
exist, their contribution has been transferred to the upper and the lower faces. Hence its equations of
motion equal those of the static ones, see Frostig and Baruch (1996).
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The boundary conditions at the edges of the panel for each face sheet (j = ¢,5) and the core, read:
For the upper and the lower face sheets, (j =¢,b), at x =0 or a:

/lchxx' - Nxx,ext =0 or Uy; = Upjext (18)
/lbc]vxyj - ny,ext =0 or Voj = Upjext (19)
7;Llachxj - Mxx,ext =0 or Wjx = Uxext (20)

\ 1 1 1 1 1
Abe ( ( — — U udy — deb,xztdr - TA uOb,ndz +—= dtzwt,xtt) M. + 2Mxyt,y + Wt,xn‘]mt + = 1.d; + M)oct,x)

6 24 12 12 2
= Vytext O W; = Wyext (21)
Y L» d+id2w +iu dy — - diwud, M.+ 2M,, + Wh i, +lrd +M,
be 6 0b,1t4h 12 b Wb.xtt 12 0t,1t4h 24 tWixtt%h c xyb,y bxttdmb 2 xUh xxb,x
= Vxbext O  Wp = Wpext (22)

For the upper and the lower face sheets, (j =¢,b), at y =0 or b:

AbeNyyy — Nypext =0 0T sg; = Ugjext (23)

;“ch\/jj — Nypext = 0 or Voj = Vojext (24)

—IpeMyy; — My =0 or wiy, =0y (25)

ﬂ 1 1 1 1, 1

Abe (( T Vopudy — 3 Vos,udy — ﬁdbwb,yttdt + Ed, Wt,yn> M, + 3 Tl + Weyud e + My, + 2Mxytx> = Vtext
OF Wy = Wiex (26)

, 1 1 1 1 1
Abe (( - ﬂ dtwt,yttdb + 6 va,ttdb + Edfwb,ytt + E UOt,ttdb> Mc + Myyb,y + 5 Tydb + 2Mryb.x + Wb,ytt[mb>

= Vipext OT  Wp = Wpext

(27)
For the upper and the lower face sheets, (j = ¢, b) at the four corners of panel (x =0 or a and y = 0 or b):
M‘cyj =0 or w; = 0 (28)

where Nigjext, Migjex and Vi orpyjexe (I,k = x,y and j = ¢, b) are the external in-plane longitudinal and shear
loads, the bending moments and the vertical external loads exerted at the edges of the upper and the lower
face sheets at x =0 or a, and at y = 0 or b, respectively, and 4, =1 at x=a or y=5 and 1. = —1 at
x =y = 0. Notice that the inertia terms appear also in the boundary conditions.

At any point through the height of the core, z. = z, the boundary conditions at the edges read:
T, (x=0,a) =0 or w.(x=0,a,z.) = Weex(2c) (20)
7,(0=0,0)=0 or w.(y=0,b,z)=Weex(z)

where w, e (z.) is the external induced displacement through the depth of the core.
The constitutive relations for each face sheet using laminated composite materials with a general lay-up
yield the following stress resultant—displacement relations (j = ¢, b):
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Ny = A1 2800 + A22580; + 426700 + B12;7 s + B22;y,,,; + B26;7.,

Ny, = Al16;e0.; + A26,¢0,,; + 4667, + B16;1,,; + B26,7,,. + B66,7,,; (30)
M,; = Bl1eon; + Bl2;e0,, + B16,7,,; + D11y, + D12;y,,, + D161,
M,y; = B12;80.; + B22;e0,,; + B26,7,,; + D12, + D22y, + D267,
M,y; = B16,e0.; + B26;80,,, + B66,7y,,; + D16,y + D26,y + D66,y ,

where Amn;, Bmn;, and Dmn; (m,n = 1,2,6 and j = ¢, b) are the reduced in-plane and flexural rigidities with
respect to the mid-plane of each face sheet, see Whitney (1987) and ¢ps; and yz,; (i = k =x,y and j =1, b),
are the mid-plane strains and curvature, respectively, of the upper and the lower face sheets, see Eq. (5).

The constitutive relations for the core with negligible in-plane stresses and orthotropic in shear, equal:

(31)

Oz R Ty Ty

Ezze = ) )) xze — I V =
h yze
Ezc ch G/w

where E.. is the modulus of elasticity of the core in the vertical direction, and G,. and G,. are the vertical
shear moduli on the x and y faces of the core.

The core stress and displacements fields must first be determined in order to describe the equations of
motion in terms of the displacements and the shear stresses. The core fields, in this model, equal those of the
static case, see Frostig and Baruch (1996) and Frostig (1998), since the inertia loads of the core have been
transferred to the face sheets, see Eq. (16). The stresses and the displacements fields for the orthotropic core
in shear can be found in Frostig (1998) and are presented here for completeness.

The vertical normal stresses within the core and at the upper and the lower face—core interfaces equal:

W, Wy c ¢
Ozze = (_?“‘?)Ezc_'_ ( _ZC+_>TX‘X+ <_ZC +_)Ty,y

2 2
Wy Wp 1 1
Ozt = ( - ? + 7)EZ" + ET«V:XC + ETY:,VC (32)
Wy Wp 1 1
Ozzp = ( - ? + 7 )Ezc - jrx,xc - Q‘Ey,yc

1 ZS lczf n TyZe . 1 zz lczf n n 1 zf 1d
c=\Z 757 A )X —~ = - | lex —Zce T AT T 5 X
“=\6E. 4E.)" "G, \6E. 4E. )™ 2¢ 29"

i lwh,ng
Uor 3
12 1c2 122 1 7,2 122 12
c — - £ £ XXy c == d — - L £ 33
v (6EZL 4EZL>T ’*( 2ty 2’)Wl}+GyL,+<6EZ¢ 4E2L>TW/” (33)
1 w22
JFUOt*E bae
_ lz§+lczc. n lzg +lczc +( z(,+1> +wbzc
Yem\T2E.2E, )™ 2E. 2E.)™ ¢ T

The stress and displacements fields within the core have been determined through: the closed-form solution
of the equilibrium equations, see Eq. (16); the compatibility requirement of the vertical displacements at the
upper and the lower face—core interface, see third equation in Eq. (7); and the compatibility requirements at
the upper face—core interface in the longitudinal and the transverse direction, see first two equations in
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Eq. (7). The additional two compatibility conditions in the longitudinal and transverse directions, at the
lower face sheet—core interface, are part of the governing dynamic equations, see Eqs. (40) and (41) ahead.

Notice that the displacement patterns in the various directions, through the depth of the core are in
general non-linear. The in-plane displacements take cubic polynomial distributions and the vertical dis-
placement has a quadratic one. However, in the case of fully distributed loads these patterns become linear
and the contributions of the vertical shear stresses in the core are almost null.

The governing equations of motion are formulated in terms of the following eight unknowns: the in-
plane displacements of the mid-plane of the face sheets in the x direction and y direction, the vertical
deflections of the upper and the lower face sheets and the vertical shear stresses in the core on the x and y
faces. The first six equations are determined through substitution of the constitutive relations, see Eq. (30),
in the equations of motion of the face sheets, Eqgs. (10)-(15) along with Eq. (32). The additional two
equations are derived using the in-plane displacement distributions of the core in x and y directions, Eq.
(33), and the compatibility requirements at the lower face—core interface in the x and y direction, Eq. (7).
Hence, the governing equations of motion read:

1 1 1 1
<_ Uory + —Uop + = dbwb,xtt - = dtwt‘xtt)Mc — Ty + Ugr My + Bl ltWt,xxx —ny —A4 16:”0:,}y

3 6 12 6
(= A66, — A12,) 000y — A160010 — 241651101y — ALt e — A6ty + (B12, -+ 2B66,) Wy e
+ B26,W,y + 3B16,W, ., = 0 (34)
1 1 1 1
Edbwb,ytt + 8 Vope 1 § Vot — g Wiyt M, — T, + Vos My — A66tUOt,xx + (_A66t - Alzt)uomcy
— A22,00,, + (—A26, — A16,)V0,1, + 3B26,W, 0 + B16,W; o — A16,110; . — A26,110; 5, — 1y
+ B22,wy,, + (B12, + 2366,)Wt,xxy =0 (35)
c 1 c 1 w, W 1 1
< - 5 - Edt> Txx + ( - z - Edt> Tyy + (?l - ?b )Ezc — Bl ltu()t,xxx + <ﬁ UOb,yttdt + 8 uOt,xttdt
1 1 1 1 1 1 1
- Edfzwt,yytt + 8 UOI,yttdt - Edtzwt,xxtt + gwt‘tt + E Uop s + 6 Wy + ﬁ deb,mtdt

1
+ 24dbwb,xxn‘dt> Mc + (_Wt,xxtt - Wt,yytt)lmt + (_2366t - Blzt)UOt,xxy - Bz6tu0t,yyy + 4D16twt,xxxy

+ D11 Wy xere + 4D26,W, 1y, + (4D66, + 2D12)W, 1y — q; + (—2B66, — B12, )1ty vy + D22,
=0

+ WM, — B22,00;3yy — 3B16,1t0xxy + (—B26, — 2B16,) 00,y — B16,00; cxx (36)
1 1 1 1

3 Uob. + & Yo + gdbwh,xtt - Edrwr,xn M, + 1, — ny + Myugp y + (—A12, — A665)vp

— A66;,u0;,‘yy + Bl 1bwb,xxx + BZ6},W},‘XW — 2Al6hu0;,1xy —A 16},1.7();,‘1“ —A 16;,17();,4,), — Al 1},1,{()],,”

+ (2B66b =+ Bl2b)wb,)gv( + 3Bl6bwb,xxy = 0 (37)

1 1 1 1
(g Vo + 3 Vo + gdbwb,m — Edtwt,yn‘)Mc + Ty + BLOpWp xx + V0p My — 1y — A26U0p,

— A22;,vo,,w —+ B22bwb7}w —+ (71416/, — A26[,)Uo},7xy — A66bl)0hxx + (2366;, + Bl2h)whﬁm
— A16bu0b,xx + (—A12b — A66b)u0byxy + 3BZ6bWbW = 0 (38)
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Wy W, 1 1 1 1 1 1
( - ?l + f)Ezc + ( - E DOt,yttdb 2% d Whxxtt — 6 UOh‘yttdh - Eu(]t‘xttdb - 8 uOb,xttdh +— 6 Wit

1 1 1 1 c 1 c 1
12d Wh it + 3Whtt + 24dtwtyyttdb + 24dtwtxxttdh>M + ( 2 2dh> Tyx + ( 2 2db> Tyy

+ Dzzbwhl\yyy - B22h”0h,y_}y - 3Bl6bu0b,xxy + Mbwb,tt - Bl lbuoh,xxx - Imbwb,xxrt + D1 1bWbexxx — 45
+ (—23161, — BZ6b)UQb_’x”; + (—2366b — Ble)UObMy + 4D16bwb,my + (—2366b — Ble)u()b,xyy

+ (2D12h + 4D66},)Wb>xxyy — [mbwb,yytt — B26bu0bm, + 4D26bwh‘xyyy — Bl6bUOh.xxx =0 (39)
1 1 1 &, e 1,
2+2d; Wiy + 2+2db Wpy — Uori-ﬁ E. Gﬂ,—i—ﬁ E. + v =0 (40)
+1d Wi + +1d w, —E+ic3f"”‘"+u Uy +— ! C%y”—o (41)
2 27t 2 T2 ) TG T 12 El 0T TR,

The governing equations of motion consist of a set of partial differential equations in three dimensions- two
in space, and one in time, of the order of twenty with six equations of the second order and two equations
of the fourth order, which also coincide with the number of boundary conditions, see Egs. (18)—(29). In the
case of a harmonic excitation the original set is replaced by a set of PDE’s in two dimensions only. The
solution of this set can be achieved numerically for a general type of boundary condition and external
dynamic loads, or analytically, for the particular case of a simply-supported plate.

2.2. Free vibration of a simply-supported panel—model 1

The free vibrations of a simply-supported sandwich panel are presented next. The edges of the upper and
the lower face sheets are simply-supported and the vertical displacements of the core through its depth, at
the edges are prevented. The face sheets consist of a specially orthotropic construction, with unsymmetrical
lay-up, where the 4i6;, Bi6; and the Di6;(i = 1,2 and j = ¢, b) are null. In such a case a closed-form solution
exists and it consists of a Fourier series in two-dimensions along with a harmonic time function that fully
satisfies the boundary conditions of a simply-supported panel. However, since each coefficients of the
Fourier series are independent, a one-term solution exists.

The series solution reads (j = ¢, b):

o; (X, y, 1) = (ZN: (ZM:C’”” cos(0,x) sin(ﬂny)>>e(‘“”)
> (X

vo; (X, ¥, 1) = ( C’"" sin(a,,x) cos(B,y )) (o)
n=1

N M
w;(x, 1) (Z (ZC sin(at,x) sin(f,y )) () (42)
n=1 1
N M
T (X, p,1) = (Z ( C" cos (otx) sin(f )) G
n=1 m=1
N M
T, (x, 1) = <Z (ZC sin(a,,x) cos(f )) (o)
n=1 m=1
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where M and N are the number of terms in the truncated series in longitudinal and transverse directions,
respectively; C’"” (f; = uor, Vo, Wy, Uon, Vop, Wh, T, and t,) are the constants of the series solution; o, = mn/a
and B, = nn/b where m and n are the wave numbers, a and b are the length and width of the panel, [ is the
complex notation and  is the eigenfrequency of the panel.

The solution is determined through substitution of a general term of the series, Eq. (42), into the gov-
erning equations, Eqs. (34)—(41) which yields a set of homogeneous algebraic equations for each m and n
term, instead of the set of partial differential equations. Thus, the solution of the PDE’s is replaced by an
eigenvalue problem, with a mass and a stiffness matrix, where the square of the eigenfrequency equals to the
eigenvalue and the series constants for each m and n are the corresponding eigenvectors. The corresponding
dimension of the stiffness matrix is 8, and that of the mass matrix is only 6. It happens since the last two
equations of motion, see Eqgs. (40) and (41), that describe the compatibility conditions in the longitudinal
and the transverse direction at the lower face—core interface, do not contain any inertia terms. Hence, the
stiffness matrix can be condensed into a dimension of 6 that of the mass matrix by removing C;, and C.,.
Thus, the eigenvalue problem yields only six eigenfrequencies for specified values of m and n.

2.3. High-order sandwich panel computational model—displacements formulation (model II)

The second computational model is used to investigate the accuracy of the results of the first model due
to the differences between the distributions of the accelerations through the depth of the core, see Eq. (9)
and its displacement fields, see Eq. (33). The advantage of this formulation is that the dynamic loads are
directly included in the equations of motion of the core and not through the interaction with the upper and
the lower face sheets, but at the cost of using higher bending moments and shear stress resultants that lack
any physical meaning. The formulation follows the same steps as the previous model, using the same basic
equations, Egs. (1)-(8), but here the unknowns are the displacements of the face sheets and the core. In
order to achieve this goal, the displacements fields of the core are assumed a priori, using the distribution of
the displacement fields that have been found in the previous model, see Eq. (33), but where the coefficients
of the polynomial distribution are the unknowns. Thus, the displacements fields for the core take a cubic
pattern for the in-plane displacements and a quadratic one for the vertical ones, and they read:

uc(x,%Zc, t) = Mo(xdh t) + ul(x7y7 t)zc + u2(x7y’ t>Z§ + u3(x7ya t)Zi
Uc(-xvyazcv t) = UO(x7y7 t) + (%] (X,y, t)zc + U2(X7y, t)Zi + Uz()ﬁy, t)Zi (43)
We(X, 1, Ze, t) = wo(x, y, 1) + wi(x, 9, 8)z. + wa(x, y, t)zi

where u;, and v, (k = 0, 1,2, 3) are the unknowns of the in-plane displacements of the core and w;(/ =0, 1,2)
are the unknowns of its vertical displacements, respectively. It is assumed that the accelerations and
velocities in the core have the same distributions. The compatibility conditions at the upper and the lower
face—core interfaces, see Eq. (7), are fulfilled using six Lagrange multipliers, see Fig. 2. Thus, the variation
of the strain energy, see Eq. (3), reads:

oU = / (O-xxrgsxxt + nytSS}yt + Txyt6yxyt) dv + / (Gxbe‘gxxb + a}g}bssyyb + Txbenyb) dv
v

v,

+ / (B + ey + 0ncBee) do -+ 6{ /0 ' /0 Dz = dif2) — ez = — ¢/2)
+ vz, = d,/2) —ve(ze = —¢/2)) + AWy — Wel(ze = — ¢/2) + A (ue(2. = ¢/2)
— Mb(Z[, = — db/Z)) + jvyb(vc(zc = C/Z) — Ub(Zb = — db/Z)) + )»zb(WE(ZC = 0/2) — w,,))dxdy (44)

where z, here, is measured downwards from mid-height of core, see Fig. 2.
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Fig. 2. Stress resultants and external loads in model II.

The equations of motion and the boundary conditions of this computational model are derived using
Egs. (1), (44), (4) and (8), with the aid of the kinematic relations, Eqgs. (5) and (6), the compatibility
conditions, Eq. (7), along with the Lagrange multipliers and the distribution of the acceleration of the core
following Eq. (43), together with the stress resultants that appear in Fig. 2, and high-order stress resultants.
Hence, after integration by parts and some algebraic manipulation, the equations of motion and the
compatibility equations read:

uOt,ttM - Nxxt,x - j-x[ — Ny — nyt,y = 0 (45)

— 2yt = Nyroe — 1y — Nypey + Vo1 = 0 (46)
1 , 1

Wt‘ttMt + (_Wt,xxtt - Wt.,)ytt)lmt - Mxxt‘xx + E;“yt‘ydt - Myt‘yy - 2Mxyt,xy — Az + Ejvxt,xdt — 4= O (47)

u()b,an + )”xb - nyb,y - Nxxb,x — Ny = 0 (48)
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UOb,n‘Mb - nyb,x - ]Vyyb,y + Ayp — Nyp = 0

Wb,tth + (_Wb,xxtt - Wb,)/ytt)lmb - M)yb,yy + 2

_czultt + uO‘tt)Mc + lxt - j'xb =0

1 1 1 1
—c Eczul,tt>Mc - Ec}vxt - Ejvxbc + Qxc =0

1 1
tuy «t 120 Uo ,,)M + A7+ 2Mpixe — Zﬂhxhcz =0

1 1 1 1
—cPuy, + C4”l4tt>Mc - g)txbcj - gixﬂ + 3Mgoe =0

1 1 1 1

%041)1” + Eczl)]_ﬂ> MC + ch — 5)%0 — E)uybc =0

1, 1 1., 1,

%c Uy + 12c Vo | Me + 2Mopiye —Z/bec +Zc Ay =10
1, 1

%C Ut +mc U3 4 Mc + 3MQ2yC — 8}}16' 8)LV];C =0

(
(
(
(
(
(
(
(

1 )
WOtt+ 120 WZtI)M Qxc‘x*ch,y“i»/Izt*/Lzb =0

1 1 1
EMCCZWL,, - MQlyc,y - E/lztc + ch - E/lzbc - Mlec,x =0
! L g M. — Mg + 2V — Mooy + i — Sy = 0
1A c XCx ze T ye —AqC — T ApC =
SOC Won 120 Wo. it 02xc, 02,y 37 2 b

The compatibility equations read:

1 1
— U, —I—Ed,th + uy — Eulc—kzczuz - §u3c3 =0

1 1
Ugp + = dpWpx — Up — s UIC — —tuy — §u303 =0

2 2 4

1 1
§U1C+Zczvz —§v3c3 =0

1
Evlc — Zczvz f§v3c3 =0

1
—Uo; + Edtwt,y + vy —

1
Uop + 5

dyWpy — Vo —
2 sV

1, 1
_/be,xdb —4p + E/lyb,ydb + ;”zb - 2Mryb‘xy -

(59)

(60)

(61)
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1 1

—w, +wy — Fwie +Zczwz =0 (66)
1 1,

Wy = Wo =3 WiC = 4 C wy, =0 (67)

where the high-order stress resultants in the core equal:

(LZng)Tdec, {chvMQlycyMQZyc} = /((I,ZC,Zg)Tde(»,
(68)

<
2

{Qxcy Mlew MQZxc} = /

£
2
c
2

(Mo R} = / (1,2)0..dz,

[

The number of equations along with the compatibility equations is twenty-three. Notice that some of the
equations are algebraic which means that this set of equations is a DAEs (differential-algebraic equations)
set and not an ordinary PDEs set. All equations of motion in the core, Egs. (51)—(61), are described in the
integral sense and not in the differential one, see Eq. (16). In other words, a core with a shear free edge is
defined here by null high-order stress resultants rather than by the condition of null shear stresses.

The boundary conditions, at each edge of the panel, consist of eleven conditions and the corners
boundary conditions. Eight conditions out of the eleven are those of the upper and the lower face sheets, see
Egs. (18)—(28), and three additional ones are those of the core. The boundary conditions for the face sheets
differ only by the shear boundary conditions in each direction; see Egs. (21) and (22) for the x-direction, and
Egs. (26) and (27) for the y-direction. Only the different and additional boundary conditions are presented
and they read:

The shear boundary conditions for the upper and the lower face sheets, at x = 0 or « (instead of Egs. (21)
and (22)) equal:

1
/lbc <Wt,xttlmt + E/Ixtdt + 2Mxyt,y + Mxxt,x) = Vytext O Wy = Wyext (69)
1,
/lhc <2nyhy + 5 /“xbdh + Wh,xtt[mb + Mxxb,x) = Vybext O Wp = Wh ext (70)
And the shear conditions in the other direction, at y = 0 or b (instead of Egs. (26) and (27)), read:
1
Abe <2Mxyt,x + E;bﬂdt + Weyithe + A/[}yzy) = Vyext O Wi = Wyext (71)
1 1
/lbc Wbﬂt[mb + _/“ybdb + Myyb,y + 2Mxyb,x = Vybext O Wp = Wpext (72)
2
The additional boundary conditions for the core, at x = 0 and a and y = 0 and b with (j = x,y), read:
Qjc =0 or Wo = Woext (73)
MQl.fC =0 or w = W1 ext (74)
Mpje =0 or wy=wyeq (75)

where wy et (k = 0, 1,2) defines the external vertical displacement, rotation and curvature imposed at mid-
height of the core, at z. = 0.
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The constitutive relations for each face sheet are those in the previous computational model and for the
core those in Eq. (31). The stresses and the stress resultants in the core must be defined in terms of the
displacements in order to describe the governing equations of motion in term of the unknown displace-
ments. They are defined using the constitutive relations, Eq. (31) along with Eq. (68). Hence, they read:

Stresses:

Txe = Uy (ul + 2”225 + 3”323 + WO,x + Wl,ch + WZ,ng)
Tyz = Gyc(vl + 2UZZC + 31)325 + WO,y + Wl,yzc + W24)/~Z§) (76)
Oz = Ezc(wl + 2W2Zc)

Stress resultants:

1
O = 5 Goe(Buz + W) + Goo(ur + wy)e

12
1
Mlec = E ch(zu2 + Wle)Cz (77)
M, —IG(3 + )5+1G( + Wou)C?
Q2xc — 20 xe\OU3 Wi x)C 12 xe(U1 Wox)C
1 3
Oy = EG}’C(?’% +w2y)e” + Goe(v1 + woy)e
1
Moy, = B Gye (20 + wy,) (78)
1 1
Mone = 5 Gre (303 + w2, )" + 15 Gue (01 +wo, )¢
1 3
ch = Ezcwl; Mzc = _EchZC (79)

6

The governing equations of motion are formulated in terms of the following twenty three unknowns: the in-
plane displacements of the mid-plane of the face sheets, in the x direction and y direction, the vertical
deflections of the upper and the lower face sheets, the six Lagrange multipliers and the eleven polynomial
coefficients of the core(see Eq. (43)). The first six equations are determined through substitution of the
constitutive relations: see Eq. (30), in the equations of motion of the face sheets, Eqgs. (45)—(50). The next
eleven equations are derived through substitution of the stress resultant relations; Eqs. (77)—(79), into Egs.
(51)—(61). The additional six compatibility conditions remain unchanged. For the sake of brevity the
governing equations of this model are not presented.

2.4. Free vibration of a simply-supported panel—model 11

The free vibration of a simply-supported sandwich panel is presented next for the second computational
model. The sandwich panel construction, used here, consists of face sheets that are specially orthotropic
construction with unsymmetrical laminated composite materials, similar to the construction used in the
formulation of model 1. A closed-form solution exists also for this case and it is based on trigonometric
functions for a harmonic excitation, which fully satisfy the boundary conditions, including those of the
higher-order of the core. The solution is demonstrated for a one term since the Fourier series coefficients are
independent.
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The solution series reads (j = ¢,b):

N M
uo;(x,, 1) = Z (Z CZZ; o8 (o) sin(ﬁny)> ) elo)

m=1

M
> Corsin(a,x) cos(ﬁm) ) e

N M
eyt = [ S0 30 Comsin(o,) sin(,)

3
I

e (k=0,1,2,3)
e (k=0,1,2,3) (80)

e (1=0,1,2)

N M
Ay ) = [ D1 D Cpmsin(a,x) cos(B,y)

fej (3,3, 1) = (ﬁ: (XM: " sin (a,,x) cos( m)) ) el

n=1 m=1

where C;':” (f; = thor, Vor, Wr, top, Vobs Why Uo,123.00.1.2,3, W0.1.25 Aty Ayrs Aet Zxbs Ayp, Asp) are the constants of the series
solution to be determined.

The solution is determined through substitution of a general term of the series, Eq. (80), into the gov-
erning equations of motion, which yields a set of homogeneous algebraic equations for each term of the
series, instead of the partial differential—algebraic set of equations. Thus, the solution of the DAEs is
replaced by an eigenvalue problem, with a mass and a stiffness matrix. Here, the dimension of the stiffness
matrix is twenty three, while that of the mass matrix is seventeen only. However, since the set of equations is
partially algebraic and partially differential equations, the corresponding mass and the stiffness matrices can
be condensed into a dimension of 11 by removing the following dependent variables: C;,_, C,,, C,., C,,,,
Ciy> Ciys Cuyss Gy ys Gy, Thus, the number of eigenvalues, for specified values of m and n is only eleven. Six
out of these eleven eigenfrequencies are similar to those of the first computational model and the additional
five correspond to local modes in the core, with nearly null displacements in the face sheets.

3. Numerical study

The numerical study demonstrates only some of the capabilities of the proposed computational models
and is not a full blown parametric study which is beyond the scope of the paper. The study includes the free
vibration behavior of two typical sandwich panels and a parametric study. The first panel consists of a
symmetrical construction of a compressible sandwich panels and is presented only to validate of the results
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of the two computational models. It has been compared with the following computational models: the
Classical Plate Theory (CPT), the First-Order Shear Deformable Plate Theory (FOSDPT), the High-Order
Shear Deformable Plate Theory (HOSDPT) due to Reddy and the general Third-Order Shear Deformable
Plate Theory (TOSDPT), see Reddy (1997). The second one consists of a non-symmetrical construction of a
compressible sandwich panels and it discusses the effect of the weight and rigidity of the core on the ei-
genfrequencies and eigenmodes. The parametric study investigates the effect of the rigidity of the core and
its mass on the fundamental frequency.

The non-dimensional eigenfrequencies of a square simply-supported panel, a = b = 1200 mm, that
consists of two identical glass fibers face sheets with a quasi-isotropic lay-up and a “soft”, are presented
first. The face sheet properties consist of thickness of d; = d, = 6 mm, an equivalent elastic modulus of
18000 MPa and a density of 2000 kg/m?3. The core is isotropic, 60 mm thick, a light Divinycell foam core,
HD100, with closed cells. Its properties are: E.. = 85 MPa, G,. = 16 MPa and a density of 100 kg/m?. The
eigenfrequencies of the proposed computational models, (with m = n = 1) are non-dimensioned with re-
spect to first eigenfrequency of the CPT that is denoted by @ussica, have been compared with the various
plate models and appear in Table 1. The results of the proposed models compare very well the results of
the various plate theories. The lowest fundamental eigenfrequency of model II is very close to that of the
TOSDPT while those of model I(HSAPT) and that of Reddy’s plate theory are almost identical. The
difference in the fundamental eigenfrequency between the two models is about 10-15%. Please notice that
the proposed computational models are also able to detect higher eigenfrequencies such as Mode 6 in the
first model and the last six modes in the second models, which the various plate theories along with the
high-order ones lack.

The second case consists of a sandwich plate with unidentical laminated composite face sheets and two
types of “soft” cores. The dimensions and the geometrical and mechanical properties of the face sheets are
the same as in previous case except that d, = 12 mm and d, = 6 mm. The core is isotropic, 60 mm thick, a
Divinycell foam core of type HD with closed cells. In order to study the entire spectrum of foam core, from
the lightest to the heaviest one, two types of core are investigated: the light one, HD100, used in previous
case, and the heaviest one HD250 with E.. = 300 MPa, G,. = 110 MPa and a density of 250 kg/m?>. The six
and the eleven non-dimensional eigenfrequencies,(for m = n = 1), for the two computational models, rel-
ative to the lower eigenfrequency of an equivalent panel without shear rigidity(CPT), ®assical, @ppear in
Table 2. In addition, the first three eigenfrequencies of the CPT model and the first five values of the
FOSDPT model are included in Table 2 for comparison. Please notice that the lowest eigenfrequency of the
FOSDPT is a little bit higher then that of model II and is about 13% lower then that of model I. The results
for Modes 2-5 in the FOSDPT and the two models are almost identical. The discrepancy between the

Table 1
Non-dimensional eigenfrequencies, ®/®gpassicat, Of the various plate theories and the two computational models for m =n =1 for a
sandwich panel with identical face sheets

Mode no. CPT FOSDPT HOSDPT (Reddy) TOSDPT Model 1 Mode II

1 1.0 0.46401875 0.50421562 0.45347050 0.50180037 0.45452487
2 4.86631712 4.86631712 4.86631712 4.80007470 4.86631712 4.82949225
3 8.22557725 7.005830095 7.249152414 6.969566926 7.27446123 7.265180327
4 8.225577251 8.225577251 7.846011948 8.22555405 8.025359024
5 10.02899867 10.12998446 10.02681448 10.1843184 10.15749199
6 14.11246731 11.6602411 11.65827929
7 14.76569461 18.37957674
8 20.64946999 18.69890927
9 21.14437323 35.12724995
10 35.16621182
11 42.06247918
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Table 2
Non-dimensional eigenfrequencies, ®/®cassica, Of the two models for various Divinycell foam cores and m = n =1 for a sandwich
panel with non-identical face sheets (unsymmetrical construction)

Mode HDI100 HD250
no. CPT FOSDPT Model 1 Model IT CPT FOSDPT Model 1 Model IT
1 1.0 0.3959595662 0.4529651387  0.3923174974 1.0 0.747158039  0.7881577689 0.6796957532
2 4946191356 4.946191356  4.899705631 4.870032709 4.999933176  4.999933176  4.865312339  4.861394596
3 8.360589333 6.338863250  6.66532645 6.654904339 8.451429596  8.451429596  8.220251375  8.200686944
4 8.360589333  8.263466507 8.093193471 10.94711203 12.21370097 12.20259205
5 9.444754025  9.657391600 9.633711841 13.02291024  14.05761391  14.03409186
6 9.856700373 9.850703953 18.35908648 18.34931763
7 - 17.51824641 - 45.29943517
8 - 17.77870281 — 45.38067221
9 - 33.98547029 - 74.76959640
10 — 34.01228285 — 88.32415740
11 - 40.14799270 - 88.36621342
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Fig. 3. Overall bending pattern—first eigenmodes (unsymmetrical construction): (a) 3D description, (b) view on the x—z plane,
(c) in-plane and vertical displacements of face sheets through mid-span at y = b/2.

eigenfrequencies of the two computational models is only in the first mode and it is about 13%. The first six
eigenmodes in the two models are identical. The last five eigenfrequencies (Modes 7-11) are higher modes,
involving mainly displacements in the ““soft” core, and can be determined only by the second computational
model. Please note that they consist of pairs of eigenfrequencies that are very close.

The first, the third, and the sixth modes for m = n = 1 of the case with the HD100 core appear in Figs. 3—
5. In Fig. 3 the overall bending mode, which corresponds to the first eigenmode, is described. The figure
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Fig. 4. Local in-plane pattern—third eigenmodes (unsymmetrical construction): (a) 3D description, (b) view on the x—z plane,
(c) view on the x—y plane.

includes a 3D description of the mode, a view on the x—z plane and the displacements of the face sheets at
mid-span at y = b/2. In Fig. 4 the eigenmodes of local in-plane displacements of the upper and the lower
face sheets are presented. The 3D picture appears in Fig. 4a and views of the various planes appear in Fig.
4b and c. The in-plane displacements of the various face sheets, see Fig. 4c, reveal that the upper and the
lower faces are distorted one perpendicular to the other. The pumping mode appears in Fig. 5 and it
corresponds to the sixth eigenmode. The figure includes the 3D description and a view on the x—z plane. Fig.
Sc describes the displacements curves at mid span, at y = b/2, and it reveals that the upper and the lower
face sheets move opposite to each other in local bending.

The distributions of the displacements of the core, at its sides and mid-span and through its depth, of the
first six eigenmodes, in longitudinal, transverse and vertical directions, appear in Fig. 6. The results reveal
that the distribution of the vertical displacements are constants for the first five modes and linear for the
sixth mode and those of the in-plane displacements are linear for the first mode, slightly non-linear for
Modes 3 and 5 and non-linear for the even (Modes 2, 4 and 6). The linear distributions are in agreement
with the first computational model assumptions that the distributions of the accelerations of the core
through its depth are linear, see Eq. (9). Please note that although the in-plane acceleration distributions of
the first computational model are linear the discrepancy between the eigenfrequencies of the two compu-
tational models is very small with the higher modes that consist of non-linear in-plane displacements
distributions. This means that the rotary inertia of the core, which affects the behavior through the linear
and non-linear in-plane displacements distributions, has a very minor effect on the eigenfrequencies. Or in
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Fig. 5. Local bending pattern—sixth eigenmodes (unsymmetrical construction): (a) 3D description, (b) view on the x—z plane,
(c) in-plane and vertical displacements of face sheets through mid-span at y = b/2.

other words, the main contribution of the core, to the free vibration of the panel, is due to its linear vertical
displacements distribution.

The higher modes, Modes 7 and 11, which mainly involve displacements in the core, appear in Figs. 7
and 8. Each figure includes a 3D description of the deformed core and sections views in x and y directions
that include: the displacements of the mid-height plane of the core as well. The in-plane displacements of
the upper and the lower face sheets are very small and are not presented. The seventh mode involves in-
plane displacements of the edges planes of the core, see Fig. 7b and c, with no vertical displacements. On the
other hand, the eleventh mode involves pumping type of displacements also within the core, see Fig. §, and
with very small in-plane displacements, see Fig. 8b and c. This higher mode differs from the sixth mode, see
Fig. 6, in terms of linear distributions of the vertical displacements and the no-linear displacements of the
in-plane ones.

The distributions of the displacements of the core, at the side and mid-span of the panels and through
its depth, of the last five eigenmodes (Modes 7-11), in the longitudinal, transverse, and vertical directions
through its depth, appear in Fig. 9. The results reveal that the distribution of almost all displacements is
non-linear except for the first four (Modes 7-10) in the vertical direction that are linear. The vertical
displacements reach very large values at the eleventh mode only, while those of the in-plane ones reach
extreme values at the seventh and eighth modes only. Here, the results and the assumption of the non-
linearity of the distributions of the accelerations of the second computational model, see Eq. (43),
coincide.

The parametric study investigates the effects of the ratio of the core modulus of elasticity relative to that
of the face sheets on the lower eigenfrequency and it also validates the lower eigenfrequency result of the
computational models. The study has been conducted on a square simply-supported panel of a = b = 1200
mm, with graphite epoxy quasi-isotropic face sheets of d, = d, = 1.0 mm in thickness, and an equivalent
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Fig. 6. Distributions of core displacements through its thickness (Modes 1-6, unsymmetrical construction): (a) displacement in
x-direction (at y = 0,x = a/2), (b) displacements in y-direction (at x = 0,y = a/2), (c) vertical displacements (at x = a/2,y = b/2).

modulus of elasticity of E, = E, = E; = 27420 MPa. The core is isotropic with a height of ¢ = 57.15 mm
and its density is related to the elastic modulus of elasticity of the core p. = 1.0805E.(E. in MPa). The ratio
of E./E, has been changed between the values of 1/1000 to 1/10, from the very light core(foam type) to the
very heavy one(honeycomb type). The results of the lower eigenfrequency with respect to the lower
eigenfrequency of an equivalent plate with flexural rigidity only appear in Fig. 10 in four curves. The first
and the second curves describe the eigenfrequency of the first-order theory for isotropic plates, denoted by
first-order (isotropic) and orthotropic plates which neglects the in-plane and the flexural rigidity of the core,
denoted by first-order (orthotropic). The first-order eigenfrequency is calculated with the aid of the
equation that appears on page 373 (Eq. (7.137)) in the book by Shames and Dym (1991) using a shear
factor of 1 and a shear modulus that equals that of the core. In Fig. 10a the results are presented for the
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Fig. 7. Core modes—seventh mode (model 11, unsymmetrical construction): (a) 3D description, (b) section view, x—z plane, (c) section
view, y—z plane.

entire region of possible values of moduli ratios E. /E;, valid for cores made of foam or metallic honeycomb.
Please note that the results of the first-order model(orthotropic) and those of model I coincide throughout
the entire range which also validates the accuracy of the lowest eigenfrequency of the computational
models. In Fig. 10b the region of moduli ratio is zoomed to the foam type of cores. The results of model 1
and the results for the first-order(orthotropic) coincide. In the foam core region, see Fig. 10a, the difference
between all computational models is minor. The lowest values are those of the second computational
model. As the core ratio increases the results of the two computational models have identical trends. The
results of the first-order(isotropic) model are valid for very small values of E./E, and as they increase,
corresponding to heavy metallic honeycomb core, the discrepancy enlarges, up to 30%. This discrepancy is
a result of the in-plane and flexural rigidity of the core that the first-order(isotropic) model takes also into
account which the other computational models neglect. The results of the first-order(orthotropic) model
that appear in Fig. 10a and Fig. 10b coincide with the results of the computational model I. Neglect of these
rigidities is accurate whenever honeycomb types of panels are considered, since the in-plane rigidities of the
honeycomb cells are null. The maximum lower eigenfrequency for this panel is reached when the moduli
ratio is about 1/50 and descends for smaller and larger ratio values.
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Fig. 8. Core modes—eleventh mode (model II, unsymmetrical construction): (a) 3D description, (b) section view, x—z plane, (c) section
view, y—z plane.

4. Conclusion

A rigorous systematic free vibration analysis of sandwich panels with a flexible core that uses the high-
order theory in computational models is presented. The mathematical formulation uses the Hamilton
principle to derive the equations of motion along with the appropriate boundary conditions that include
also rotary inertia terms. The formulation is general and is valid for any type of core, for any type of
boundary conditions as well as the cases where the conditions at the upper face sheet are different from the
lower one at the same edge, and to any type of loading, distributed or localized. The model yields results in
the form of displacements, stress resultants in the face sheets, displacements and stress fields in the core, as
well as interfacial vertical normal stresses at the core—face interfaces. Two computational models are
presented.

The first computational model uses the shear stresses in the core as unknowns in addition to the face
displacement ones. It assumes that the core transfers its inertia loads to the adjacent face sheets, and that
the velocities and the accelerations distributions through its depth are assumed to be linear only to
determine the kinetic energy contribution. The resulting displacement distributions in the core are non-
linear, in general, and they take a cubic polynomial distribution for the in-plane displacements and a
quadratic shape for the vertical displacements. The equations of motion consist of eight equations with the
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Fig. 9. Distribution of Core displacements through its thickness (Modes 7-11, model II, unsymmetrical construction): (a) displacement
in x-direction (at y = 0,x = a/2), (b) displacements in y-direction (at x = 0,y = a/2), (c) vertical displacements (at x = a/2,y = b/2).

order of twenty. Closed-form solutions are presented for a simply-supported panel with specially ortho-
tropic and an unsymmetrical lay-up of laminated composite material face sheets, along with the mass and
stiffness matrices. The stiffness matrix dimension is eight while that of the mass matrix is only six. For each
pair of wave numbers, m and n, there are only six eigenfrequencies.

The second computational model determines the effects of the discrepancy between the velocities of the
core and the resulting displacements on the eigenfrequencies and the eigenmodes. It uses the displacements
of the upper and the lower face sheets as unknowns, with the coefficients of the cubic and the quadratic
displacement distributions of the core, which have been determined in the first model, and the Lagrange
multipliers that are used to impose compatibility between the face sheets and the core at their interfaces.
This formulation yields twenty-three equations of motions, algebraic and partial differential equations,
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along with twenty-two boundary conditions in each direction. The closed-form solutions of a simply-
supported panel with specially orthotropic and unsymmetrical face sheets yield a stiffness matrix with a
dimension of twenty-three and a mass matrix with a dimension of seventeen. The number of valid eigen-
values even reduces to eleven since some of the unknowns are algebraic ones. The disadvantage of this
model is that there are higher order stress resultants in the core that have only a mathematical meaning and
are physically meaningless. In addition, it is nearly impossible to impose a real shear-free edge of the core
with this model.

Some typical sandwich panels have been numerically investigated using the two computational models
along with first-order and high-order plate theories for comparison and several eigenmodes are presented.
The results of the various plate theories compared very well with those of the two computational models
compared in the fundamental model as well as in the higher modes. A comparison between the results of the
two computational models reveals a difference at the lowest eigenfrequency by about thirteen percent and
very small differences for all other modes. All other higher eigenfrequencies are almost identical and in the
two models the first six eigenmodes are almost identical, although the accelerations in the first model are
linear, and in the second one, non-linear. Please notice that the eigenfrequencies of the second model are
smaller then the corresponding ones in the first model. The second model yields additional modes which
correspond mainly to displacements in the core along with very small displacements in the face sheets. The
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lower values of the eigenfrequencies in the second model are a result of the additional degrees of freedom, in
the formulation, as compared with the first computational model.

A parametric study has been conducted for a specific sandwich panel with graphite epoxy laminated
composite face sheets. This study validates the accuracy of the lower eigenfrequency of the computational
models, and examines the influence of the moduli ratio between the core and the face sheets on this ei-
genfrequency. The range of the moduli ratio starts from very low strength foam type of core to the very
high strength metallic honeycomb. The eigenfrequency increases from almost insignificant values up to a
maximum at a moduli ratio of about 1/50, and it descends as the ratio increases. The parametric study
reveals that the results of the first-order(isotropic) model are valid as long as low strength and low weight
foam type of core is of concern. A comparison between the results of the low frequency of the proposed
models and the results of the first-order(orthotropic), model is in very good agreement.

The two computational models yield nearly identical results in spite of the inconsistency in the
description of the velocities/accelerations and the displacement distributions through the depth of the core
in the first model. They compare very well with the various plate theories and they enhance the physical
insight of free vibration of sandwich panels with a “soft” core and should be used whenever a sandwich
construction consists of a low-strength core.
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